Suppr超能文献

一种基于概率自动语音模型扩展(PAVME)和多证据决策引擎(MEDE)的轴承故障诊断方法。

A Bearing Fault Diagnosis Method Based on PAVME and MEDE.

作者信息

Yan Xiaoan, Xu Yadong, She Daoming, Zhang Wan

机构信息

School of Mechatronics Engineering, Nanjing Forestry University, Nanjing 210037, China.

School of Mechanical Engineering, Southeast University, Nanjing 211189, China.

出版信息

Entropy (Basel). 2021 Oct 25;23(11):1402. doi: 10.3390/e23111402.

Abstract

When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.

摘要

当滚动轴承出现局部故障时,与局部故障相关的实际轴承振动信号具有非线性和非平稳特性。为了从采集到的非线性、非平稳轴承振动信号中提取有用的故障特征并提高诊断精度,本文提出了一种基于参数自适应变分模态提取(PAVME)和多尺度包络离散熵(MEDE)的新型轴承故障诊断方法。首先,提出了一种名为参数自适应变分模态提取(PAVME)的新方法来处理采集到的原始轴承振动信号,获取与轴承故障相关的频率成分,其两个重要参数(即惩罚因子和模态中心频率)由鲸鱼优化算法自动确定。随后,基于处理后的轴承振动信号,计算一种名为多尺度包络离散熵(MEDE)的有效复杂度评估方法,用于进行轴承故障特征提取。最后,将提取的故障特征输入到k近邻(KNN)中,以自动识别滚动轴承的不同健康状况。通过案例研究和对比分析来验证所提方法的有效性和优越性。实验结果表明,所提方法不仅能够有效提取轴承故障特征,而且在单速或变速情况下对轴承故障模式都能获得较高的识别准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bb7/8620297/eeb19f4ba40a/entropy-23-01402-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验