Suppr超能文献

基于复合尺度可变离散熵和自优化变分模态分解算法的联合收割机滚动轴承故障诊断

Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm.

作者信息

Jiang Wei, Shan Yahui, Xue Xiaoming, Ma Jianpeng, Chen Zhong, Zhang Nan

机构信息

Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huai'an 223003, China.

Wuhan Second Ship Design and Research Institute, Wuhan 430064, China.

出版信息

Entropy (Basel). 2023 Jul 25;25(8):1111. doi: 10.3390/e25081111.

Abstract

Because of the influence of harsh and variable working environments, the vibration signals of rolling bearings for combine harvesters usually show obvious characteristics of strong non-stationarity and nonlinearity. Accomplishing accurate fault diagnosis using these signals for rolling bearings is a challenging subject. In this paper, a novel fault diagnosis method based on composite-scale-variable dispersion entropy (CSvDE) and self-optimization variational mode decomposition (SoVMD) is proposed, systematically combining the nonstationary signal analysis approach and machine learning technology. Firstly, an improved SoVMD algorithm is developed to realize adaptive parameter optimization and to further extract multiscale frequency components from original signals. Subsequently, a CSvDE-based feature learning model is established to generate the multiscale fault feature space (MsFFS) of frequency components for the improvement of fault feature learning ability. Finally, the generated MsFFS can serve as the inputs of the Softmax classifier for fault category identification. Extensive experiments on the vibration datasets collected from rolling bearings of combine harvesters are conducted, and the experimental results demonstrate the more superior and robust fault diagnosis performance of the proposed method compared to other existing approaches.

摘要

由于恶劣多变的工作环境的影响,联合收割机滚动轴承的振动信号通常表现出明显的强非平稳性和非线性特征。利用这些滚动轴承信号实现准确的故障诊断是一个具有挑战性的课题。本文提出了一种基于复合尺度可变离散熵(CSvDE)和自优化变分模态分解(SoVMD)的新型故障诊断方法,系统地结合了非平稳信号分析方法和机器学习技术。首先,开发了一种改进的SoVMD算法,以实现自适应参数优化,并进一步从原始信号中提取多尺度频率分量。随后,建立了基于CSvDE的特征学习模型,以生成频率分量的多尺度故障特征空间(MsFFS),提高故障特征学习能力。最后,生成的MsFFS可作为Softmax分类器的输入,用于故障类别识别。对从联合收割机滚动轴承采集的振动数据集进行了大量实验,实验结果表明,与其他现有方法相比,该方法具有更优越、更稳健的故障诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11ef/10453690/b21c9dd7f582/entropy-25-01111-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验