Suppr超能文献

通过信息学推动药物滥用指数(SEI)的发展。

Towards the Development of a Substance Abuse Index (SEI) through Informatics.

作者信息

Guttha Nikhila, Miao Zhuqi, Shamsuddin Rittika

机构信息

Department of Computer Science, Oklahoma State University, Stillwater, OK 74078, USA.

Center for Health Systems Innovation, Oklahoma State University, Stillwater, OK 74078, USA.

出版信息

Healthcare (Basel). 2021 Nov 20;9(11):1596. doi: 10.3390/healthcare9111596.

Abstract

Substance abuse or drug dependence is a prevalent phenomenon, and is on the rise in United States. Important contributing factors for the prevalence are the addictive nature of certain medicinal/prescriptive drugs, individual dispositions (biological, physiological, and psychological), and other external influences (e.g., pharmaceutical advertising campaigns). However, currently there is no comprehensive computational or machine learning framework that allows systematic studies of substance abuse and its factors with majority of the works using subjective surveys questionnaires and focusing on classification techniques. Lacking standardized methods and/or measures to prescribe medication and to study substance abuse makes it difficult to advance through collective research efforts. Thus, in this paper, we propose to test the feasibility of developing a, objective substance effect index, SEI, that can measure the tendency of an individual towards substance abuse. To that end, we combine the benefits of Electronics Medical Records (EMR) with machine learning technology by defining SEI as a function of EMR data and using logistics regression to obtain a closed form expression for SEI. We conduct various evaluations to validate the proposed model, and the results show that further work towards the development of SEI will not only provide researchers with standard computational measure for substance abuse, but may also allow them to study certain attribute interactions to gain further insights into substance abuse tendencies.

摘要

药物滥用或药物依赖是一种普遍现象,且在美国呈上升趋势。导致这种普遍性的重要因素包括某些药用/处方药物的成瘾性、个体特质(生物学、生理学和心理学方面)以及其他外部影响(例如制药广告活动)。然而,目前尚无全面的计算或机器学习框架能够对药物滥用及其相关因素进行系统研究,大多数研究工作采用主观调查问卷并侧重于分类技术。缺乏标准化的药物处方方法和/或措施以及药物滥用研究方法,使得难以通过集体研究努力取得进展。因此,在本文中,我们提议测试开发一种客观物质效应指数(SEI)的可行性,该指数能够衡量个体对药物滥用的倾向。为此,我们将电子病历(EMR)的优势与机器学习技术相结合,将SEI定义为EMR数据的函数,并使用逻辑回归来获得SEI的闭式表达式。我们进行了各种评估以验证所提出的模型,结果表明,朝着SEI的开发进一步开展工作不仅将为研究人员提供药物滥用的标准计算指标,还可能使他们能够研究某些属性相互作用,以进一步深入了解药物滥用倾向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96c7/8620603/780fb0266b6d/healthcare-09-01596-g001.jpg

相似文献

1
Towards the Development of a Substance Abuse Index (SEI) through Informatics.
Healthcare (Basel). 2021 Nov 20;9(11):1596. doi: 10.3390/healthcare9111596.
2
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
3
Intrauterine Substance Exposure and the Risk for Subsequent Physical Abuse Hospitalizations.
Acad Pediatr. 2020 May-Jun;20(4):468-474. doi: 10.1016/j.acap.2020.02.002. Epub 2020 Feb 17.
5
The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
JBI Database System Rev Implement Rep. 2015 Jan;13(1):52-64. doi: 10.11124/jbisrir-2015-1919.
6
Prevalence of substance use and psychiatric disorders in a highly select chronic pain population.
J Addict Med. 2013 Jan-Feb;7(1):17-24. doi: 10.1097/ADM.0b013e3182738655.
7
Scaling Up Research on Drug Abuse and Addiction Through Social Media Big Data.
J Med Internet Res. 2017 Oct 31;19(10):e353. doi: 10.2196/jmir.6426.
8
Michigan assessment-screening test for alcohol and drugs (MAST/AD): evaluation in a clinical sample.
Am J Addict. 2004 Mar-Apr;13(2):151-62. doi: 10.1080/10550490490435948.

引用本文的文献

本文引用的文献

1
Identifying risk of opioid use disorder for patients taking opioid medications with deep learning.
J Am Med Inform Assoc. 2021 Jul 30;28(8):1683-1693. doi: 10.1093/jamia/ocab043.
3
Machine-learning approaches to substance-abuse research: emerging trends and their implications.
Curr Opin Psychiatry. 2020 Jul;33(4):334-342. doi: 10.1097/YCO.0000000000000611.
4
Neural transfer learning for assigning diagnosis codes to EMRs.
Artif Intell Med. 2019 May;96:116-122. doi: 10.1016/j.artmed.2019.04.002. Epub 2019 Apr 12.
5
Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring.
Adv Healthc Mater. 2018 Jun;7(12):e1800074. doi: 10.1002/adhm.201800074. Epub 2018 May 11.
6
Machine Learning of Functional Magnetic Resonance Imaging Network Connectivity Predicts Substance Abuse Treatment Completion.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 Feb;3(2):141-149. doi: 10.1016/j.bpsc.2017.07.003. Epub 2017 Aug 1.
7
Use of a machine learning framework to predict substance use disorder treatment success.
PLoS One. 2017 Apr 10;12(4):e0175383. doi: 10.1371/journal.pone.0175383. eCollection 2017.
8
What is an ROC curve?
Emerg Med J. 2017 Jun;34(6):357-359. doi: 10.1136/emermed-2017-206735. Epub 2017 Mar 16.
9
Insulin signaling and addiction.
Neuropharmacology. 2011 Dec;61(7):1123-8. doi: 10.1016/j.neuropharm.2011.02.028. Epub 2011 Mar 21.
10
Measuring addiction propensity and severity: the need for a new instrument.
Drug Alcohol Depend. 2010 Sep 1;111(1-2):4-12. doi: 10.1016/j.drugalcdep.2010.03.011. Epub 2010 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验