Suppr超能文献

用于评估分子多样性的基质辅助激光解吸电离飞行时间质谱分析及与多位点序列分型和核心基因组多位点序列分型的比较:一项卢森堡的一体化健康研究

Investigation of MALDI-TOF Mass Spectrometry for Assessing the Molecular Diversity of and Comparison with MLST and cgMLST: A Luxembourg One-Health Study.

作者信息

Feucherolles Maureen, Nennig Morgane, Becker Sören L, Martiny Delphine, Losch Serge, Penny Christian, Cauchie Henry-Michel, Ragimbeau Catherine

机构信息

Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, L-4422 Belvaux, Luxembourg.

Epidemiology and Microbial Genomics, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg.

出版信息

Diagnostics (Basel). 2021 Oct 20;11(11):1949. doi: 10.3390/diagnostics11111949.

Abstract

There is a need for active molecular surveillance of human and veterinary infections. However, sequencing of all isolates is associated with high costs and a considerable workload. Thus, there is a need for a straightforward complementary tool to prioritize isolates to sequence. In this study, we proposed to investigate the ability of MALDI-TOF MS to pre-screen genetic diversity in comparison to MLST and cgMLST. A panel of 126 isolates, with 10 clonal complexes (CC), 21 sequence types (ST) and 42 different complex types (CT) determined by the SeqSphere+ cgMLST, were analysed by a MALDI Biotyper, resulting into one average spectra per isolate. Concordance and discriminating ability were evaluated based on protein profiles and different cut-offs. A random forest algorithm was trained to predict STs. With a 94% similarity cut-off, an AWC of 1.000, 0.933 and 0.851 was obtained for MLST, MLST and cgMLST profile, respectively. The random forest classifier showed a sensitivity and specificity up to 97.5% to predict four different STs. Protein profiles allowed to predict CCs, STs and CTs at 100%, 93% and 85%, respectively. Machine learning and MALDI-TOF MS could be a fast and inexpensive complementary tool to give an early signal of recurrent on a routine basis.

摘要

需要对人类和兽医感染进行主动分子监测。然而,对所有分离株进行测序成本高昂且工作量巨大。因此,需要一种简单的补充工具来对分离株进行测序优先级排序。在本研究中,我们提议研究基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)与多位点序列分型(MLST)和核心基因组多位点序列分型(cgMLST)相比,预筛遗传多样性的能力。通过MALDI Biotyper对一组126株分离株进行分析,这些分离株由SeqSphere+ cgMLST确定有10个克隆复合体(CC)、21个序列类型(ST)和42种不同的复合体类型(CT),每个分离株生成一个平均光谱。基于蛋白质谱和不同的截断值评估一致性和鉴别能力。训练了一种随机森林算法来预测STs。在相似度截断值为94%时,MLST、MLST和cgMLST谱的平均加权一致性(AWC)分别为1.000、0.933和0.851。随机森林分类器预测四种不同STs的灵敏度和特异性高达97.5%。蛋白质谱分别能以100%、93%和85%的准确率预测CCs、STs和CTs。机器学习和MALDI-TOF MS可以成为一种快速且廉价的补充工具,以便在常规基础上对复发性感染给出早期信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfd5/8621691/9f3bc1302811/diagnostics-11-01949-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验