Suppr超能文献

染色体折叠促进辐射和核酸酶诱导的 DNA 断裂引起的染色体内畸变。

Chromosome Folding Promotes Intrachromosomal Aberrations under Radiation- and Nuclease-Induced DNA Breakage.

机构信息

Mathematical Biophysics Laboratory, Emanuel Institute of Biochemical Physics of RAS, Kosygin Str. 4, 119334 Moscow, Russia.

Department of Semiconductor Quantum Electronics and Biophotonics, PhysBio, National Research Nuclear University MEPhI, Kashirskoye Shosse 31, 115409 Moscow, Russia.

出版信息

Int J Mol Sci. 2021 Nov 10;22(22):12186. doi: 10.3390/ijms222212186.

Abstract

The long-standing question in radiation and cancer biology is how principles of chromosome organization impact the formation of chromosomal aberrations (CAs). To address this issue, we developed a physical modeling approach and analyzed high-throughput genomic data from chromosome conformation capture (Hi-C) and translocation sequencing (HTGTS) methods. Combining modeling of chromosome structure and of chromosomal aberrations induced by ionizing radiation (IR) and nuclease we made predictions which quantitatively correlated with key experimental findings in mouse chromosomes: chromosome contact maps, high frequency of cis-translocation breakpoints far outside of the site of nuclease-induced DNA double-strand breaks (DSBs), the distinct shape of breakpoint distribution in chromosomes with different 3D organizations. These correlations support the heteropolymer globule principle of chromosome organization in G1-arrested pro-B mouse cells. The joint analysis of Hi-C, HTGTS and physical modeling data offers mechanistic insight into how chromosome structure heterogeneity, globular folding and lesion dynamics drive IR-recurrent CAs. The results provide the biophysical and computational basis for the analysis of chromosome aberration landscape under IR and nuclease-induced DSBs.

摘要

在辐射和癌症生物学中,长期存在的问题是染色体组织的原则如何影响染色体畸变(CAs)的形成。为了解决这个问题,我们开发了一种物理建模方法,并分析了来自染色体构象捕获(Hi-C)和易位测序(HTGTS)方法的高通量基因组数据。我们结合了染色体结构和电离辐射(IR)和核酸酶诱导的染色体畸变的建模,做出了预测,这些预测与小鼠染色体上的关键实验结果定量相关:染色体接触图谱、远在核酸酶诱导的 DNA 双链断裂(DSBs)位点之外的顺式-转位断裂点的高频、在具有不同 3D 组织的染色体中不同的断裂点分布形状。这些相关性支持了 G1 期阻滞的前 B 细胞中染色体组织的异多聚球蛋白球原则。Hi-C、HTGTS 和物理建模数据的联合分析为染色体结构异质性、球形折叠和损伤动力学如何驱动 IR 复发性 CAs 提供了机制见解。该结果为在 IR 和核酸酶诱导的 DSB 下分析染色体畸变景观提供了生物物理和计算基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39f7/8618582/45d55e1b5fbf/ijms-22-12186-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验