Dahl-Jessen Mikkel, Terkelsen Thorkild, Bak Rasmus O, Jensen Uffe Birk
Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark.
Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark.
Genome Res. 2025 Feb 14;35(2):231-241. doi: 10.1101/gr.278575.123.
Structural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes. The target regions correlate with the borders of megabase-sized topologically associated domains (TADs), and we used CRISPR-Cas9 nuclease and pairs of single guide RNAs (sgRNAs) against these targets to generate DSBs in both K562 cells and H9 human embryonic stem cells (hESCs). Droplet digital PCR (ddPCR) was used to quantify the resulting recombination events, and high-throughput sequencing was used to analyze the chimeric junctions created between the two DSBs. We observe a significantly higher formation frequency of deletions and inversions with DSBs in proximity compared with deletions and inversions with DSBs not in proximity in K562 cells. Additionally, our results suggest that DSB proximity may affect the ligation of chimeric deletion junctions. Taken together, spatial proximity between DSBs is a significant predictor of large-scale deletion and inversion frequency induced by CRISPR-Cas9 in K562 cells. This finding has implications for understanding SVs in the human genome and for the future application of CRISPR-Cas9 in gene editing and the modeling of rare SVs.
结构变异(SVs)在遗传多样性、进化和致癌过程中发挥着重要作用,因此对人类健康至关重要。然而,双链断裂(DSBs)的空间 proximity 如何影响 SVs 的形成仍不清楚。为了研究两个 DSBs 之间的空间 proximity 是否会影响 DNA 修复,我们使用了来自 3C 实验(Hi-C、ChIA-PET 和 ChIP-seq)的数据来识别六条不同染色体上的高度相互作用位点。目标区域与兆碱基大小的拓扑相关结构域(TADs)的边界相关,我们使用 CRISPR-Cas9 核酸酶和针对这些目标的单导向 RNA(sgRNAs)对在 K562 细胞和 H9 人胚胎干细胞(hESCs)中产生 DSBs。液滴数字 PCR(ddPCR)用于量化产生的重组事件,高通量测序用于分析两个 DSBs 之间产生的嵌合连接。我们观察到,与 K562 细胞中不相邻的 DSBs 相比,相邻 DSBs 的缺失和倒位形成频率显著更高。此外,我们的结果表明 DSB 接近度可能会影响嵌合缺失连接的连接。综上所述,DSBs 之间的空间 proximity 是 CRISPR-Cas9 在 K562 细胞中诱导的大规模缺失和倒位频率的重要预测指标。这一发现对于理解人类基因组中的 SVs 以及 CRISPR-Cas9 在基因编辑和罕见 SVs 建模中的未来应用具有重要意义。