Suppr超能文献

利用HRCT图像的全肺纹理分析对癌症相关性特发性肺纤维化进行定量分析

Quantification of Cancer-Developing Idiopathic Pulmonary Fibrosis Using Whole-Lung Texture Analysis of HRCT Images.

作者信息

Liang Chia-Hao, Liu Yung-Chi, Wan Yung-Liang, Yun Chun-Ho, Wu Wen-Jui, López-González Rafael, Huang Wei-Ming

机构信息

Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan.

Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan.

出版信息

Cancers (Basel). 2021 Nov 9;13(22):5600. doi: 10.3390/cancers13225600.

Abstract

Idiopathic pulmonary fibrosis (IPF) patients have a significantly higher risk of developing lung cancer (LC). There is only limited evidence of the use of texture-based radiomics features from high-resolution computed tomography (HRCT) images for risk stratification of IPF patients for LC. We retrospectively enrolled subjects who suffered from IPF in this study. Clinical data including age, gender, smoking status, and pulmonary function were recorded. Non-contrast chest CT for fibrotic score calculation and determination of three dimensional measures of whole-lung texture and emphysema were performed using a promising deep learning imaging platform. The results revealed that among 116 subjects with IPF (90 non-cancer and 26 lung cancer cases), the radiomics features showed significant differences between non-cancer and cancer patients. In the training cohort, the diagnostic accuracy using selected radiomics features with AUC of 0.66-0.73 (sensitivity of 80.0-85.0% and specificity of 54.2-59.7%) was not inferior to that obtained using traditional risk factors, such as gender, smoking status, and emphysema (%). In the validation cohort, the combination of radiomics features and traditional risk factors produced a diagnostic accuracy of 0.87 AUC and an accuracy of 75.0%. In this study, we found that whole-lung CT texture analysis is a promising tool for LC risk stratification of IPF patients.

摘要

特发性肺纤维化(IPF)患者患肺癌(LC)的风险显著更高。对于IPF患者进行LC风险分层,利用高分辨率计算机断层扫描(HRCT)图像基于纹理的放射组学特征的证据有限。在本研究中,我们回顾性纳入了患有IPF的受试者。记录了包括年龄、性别、吸烟状况和肺功能在内的临床数据。使用一个有前景的深度学习成像平台进行非增强胸部CT以计算纤维化评分并确定全肺纹理和肺气肿的三维测量值。结果显示,在116例IPF受试者(90例非癌症患者和26例肺癌患者)中,放射组学特征在非癌症患者和癌症患者之间存在显著差异。在训练队列中,使用选定放射组学特征的诊断准确性(AUC为0.66 - 0.73,敏感性为80.0 - 85.0%,特异性为54.2 - 59.7%)不低于使用传统风险因素(如性别、吸烟状况和肺气肿(%))所获得的诊断准确性。在验证队列中,放射组学特征与传统风险因素的组合产生了0.87的AUC诊断准确性和75.0%的准确率。在本研究中,我们发现全肺CT纹理分析是IPF患者LC风险分层的一种有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c755/8615829/cc308ad7a28c/cancers-13-05600-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验