Suppr超能文献

使用林奇综合征相关筛查标志物的机器学习用于妇科癌症复发预测

Machine Learning for Recurrence Prediction of Gynecologic Cancers Using Lynch Syndrome-Related Screening Markers.

作者信息

Kim Byung Wook, Choi Min Chul, Kim Min Kyu, Lee Jeong-Won, Kim Min Tae, Noh Joseph J, Park Hyun, Jung Sang Geun, Joo Won Duk, Song Seung Hun, Lee Chan

机构信息

Department of Information and Communication Engineering, Changwon National University, Changwon 51140, Korea.

Comprehensive Gynecologic Cancer Center, CHA Bundang Medical Center, CHA University, Seongnam 13497, Gyeonggido, Korea.

出版信息

Cancers (Basel). 2021 Nov 12;13(22):5670. doi: 10.3390/cancers13225670.

Abstract

To support the implementation of genome-based precision medicine, we developed machine learning models that predict the recurrence of patients with gynecologic cancer in using immune checkpoint inhibitors (ICI) based on clinical and pathologic characteristics, including Lynch syndrome-related screening markers such as immunohistochemistry (IHC) and microsatellite instability (MSI) tests. To accomplish our goal, we reviewed the patient demographics, clinical data, and pathological results from their medical records. Then we identified seven potential characteristics (four MMR IHC [ and ], MSI, Age 60, and tumor size). Following that, predictive models were built based on these variables using six machine learning algorithms: logistic regression (LR), support vector machine (SVM), naive Bayes (NB), random forest (RF), gradient boosting (GB), and extreme gradient boosting (EGB) (XGBoost). The experimental results showed that the RF-based model performed best at predicting gynecologic cancer recurrence, with AUCs of 0.818 and 0.826 for the 5-fold cross-validation (CV) and 5-fold CV with 10 repetitions, respectively. This study provides novel and baseline results about predicting the recurrence of gynecologic cancer in patients using ICI by using machine learning methods based on Lynch syndrome-related screening markers.

摘要

为支持基于基因组的精准医学的实施,我们开发了机器学习模型,该模型根据临床和病理特征,包括林奇综合征相关的筛查标志物,如免疫组织化学(IHC)和微卫星不稳定性(MSI)检测,来预测妇科癌症患者使用免疫检查点抑制剂(ICI)后的复发情况。为实现我们的目标,我们回顾了患者的人口统计学数据、临床资料以及病历中的病理结果。然后我们确定了七个潜在特征(四个错配修复免疫组化[ 和 ]、微卫星不稳定性、60岁及肿瘤大小)。在此之后,基于这些变量,使用六种机器学习算法构建了预测模型:逻辑回归(LR)、支持向量机(SVM)、朴素贝叶斯(NB)、随机森林(RF)、梯度提升(GB)和极端梯度提升(EGB)(XGBoost)。实验结果表明,基于随机森林的模型在预测妇科癌症复发方面表现最佳,在5折交叉验证(CV)和重复10次的5折交叉验证中,曲线下面积(AUC)分别为0.818和0.826。本研究通过基于林奇综合征相关筛查标志物的机器学习方法,提供了关于预测妇科癌症患者使用ICI后复发情况的新颖且基础的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2198/8616351/0704dee75311/cancers-13-05670-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验