Suppr超能文献

整合空间建模和时空模式挖掘分析在与传染病相关的健康问题中的应用:以巴基斯坦登革热为例。

Integrating Spatial Modelling and Space-Time Pattern Mining Analytics for Vector Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan.

机构信息

Department of Geography, Government College University Faisalabad, Faisalabad 38000, Pakistan.

Department of Geography, Hong Kong Baptist University, Hong Kong.

出版信息

Int J Environ Res Public Health. 2021 Nov 16;18(22):12018. doi: 10.3390/ijerph182212018.

Abstract

The spatial-temporal assessment of vector diseases is imperative to design effective action plans and establish preventive strategies. Therefore, such assessments have potential public health planning-related implications. In this context, we here propose an (I-SpaDE) framework. The I-SpaDE integrates various techniques such as the , the , space-time assessment and prediction, and the (GWR). It makes it possible to systematically assess the disease concentrations, patterns/trends, clustering, prediction dynamics, and spatially varying relationships between disease and different associated factors. To demonstrate the applicability and effectiveness of the I-SpaDE, we apply it in the second largest city of Pakistan, namely Lahore, using Dengue Fever (DF) during 2007-2016 as an example vector disease. The most significant clustering is evident during the years 2007-2008, 2010-2011, 2013, and 2016. Mostly, the clusters are found within the . The prediction analysis shows an inclination of DF distribution from less to more urbanized areas. The results from the GWR show that among various socio-ecological factors, the temperature is the most significantly associated with the DF followed by vegetation and built-up area. While the results are important to understand the DF situation in the study area and have useful implications for public health planning, the proposed framework is flexible, replicable, and robust to be utilized in other similar regions, particularly in developing countries in the tropics and sub-tropics.

摘要

对病媒传播疾病进行时空评估对于制定有效的行动计划和建立预防策略至关重要。因此,此类评估具有潜在的公共卫生规划相关意义。在此背景下,我们提出了一种(I-SpaDE)框架。I-SpaDE 集成了各种技术,如时空分析和预测、地理加权回归(GWR)等。它可以系统地评估疾病的集中程度、模式/趋势、聚类、预测动态以及疾病与不同相关因素之间的空间变化关系。为了展示 I-SpaDE 的适用性和有效性,我们以巴基斯坦第二大城市拉合尔为例,利用 2007-2016 年登革热(DF)作为示例病媒传播疾病来应用该框架。最显著的聚类发生在 2007-2008 年、2010-2011 年、2013 年和 2016 年。大多数聚类发生在城市地区。预测分析显示,DF 的分布从城市化程度较低的地区向城市化程度较高的地区倾斜。GWR 的结果表明,在各种社会生态因素中,温度与 DF 相关性最高,其次是植被和建成区。虽然这些结果对于了解研究区域的 DF 情况并对公共卫生规划具有重要意义,但所提出的框架具有灵活性、可复制性和稳健性,可以在其他类似地区,特别是在热带和亚热带发展中国家使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ca1/8618682/ee2d92e4378c/ijerph-18-12018-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验