Suppr超能文献

基于人口统计学和生活方式因素的高效腰痛预测的机器学习模型比较分析。

Comparative analysis of machine learning models for efficient low back pain prediction using demographic and lifestyle factors.

出版信息

J Back Musculoskelet Rehabil. 2024;37(6):1631-1640. doi: 10.3233/BMR-240059.

Abstract

BACKGROUND

Low back pain (LBP) is one of the most frequently occurring musculoskeletal disorders, and factors such as lifestyle as well as individual characteristics are associated with LBP.

OBJECTIVE

The purpose of this study was to develop and compare efficient low back pain prediction models using easily obtainable demographic and lifestyle factors.

METHODS

Data from adult men and women aged 50 years or older collected from the Korean National Health and Nutrition Examination Survey (KNHANES) were used. The dataset included 22 predictor variables, including demographic, physical activity, occupational, and lifestyle factors. Four machine learning algorithms, including XGBoost, LGBM, CatBoost, and RandomForest, were used to develop predictive models.

RESULTS

All models achieved an accuracy greater than 0.8, with the LGBM model outperforming the others with an accuracy of 0.830. The CatBoost model had the highest sensitivity (0.804), while the LGBM model showed the highest specificity (0.884) and F1-Score (0.821). Feature importance analysis revealed that EQ-5D was the most critical variable across all models.

CONCLUSION

In this study, an efficient LBP prediction model was developed using easily accessible variables. Using this model, it may be helpful to identify the risk of LBP in advance or establish prevention strategies in subjects who have difficulty accessing medical facilities.

摘要

背景

腰痛(LBP)是最常见的肌肉骨骼疾病之一,生活方式和个体特征等因素与 LBP 相关。

目的

本研究旨在开发和比较使用易于获得的人口统计学和生活方式因素的高效腰痛预测模型。

方法

使用来自韩国国家健康和营养检查调查(KNHANES)的 50 岁及以上成年男性和女性的数据。数据集包括 22 个预测变量,包括人口统计学、身体活动、职业和生活方式因素。使用四种机器学习算法,包括 XGBoost、LGBM、CatBoost 和 RandomForest,来开发预测模型。

结果

所有模型的准确率均大于 0.8,其中 LGBM 模型表现最佳,准确率为 0.830。CatBoost 模型的敏感性最高(0.804),而 LGBM 模型的特异性最高(0.884)和 F1 评分最高(0.821)。特征重要性分析表明,EQ-5D 在所有模型中都是最重要的变量。

结论

本研究使用易于获取的变量开发了一种高效的 LBP 预测模型。使用该模型,可能有助于提前识别 LBP 的风险,或为难以获得医疗设施的患者制定预防策略。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验