Suppr超能文献

利用压力测量和拓扑信息在配水管网中进行稳健的数据驱动泄漏定位

Robust Data-Driven Leak Localization in Water Distribution Networks Using Pressure Measurements and Topological Information.

作者信息

Alves Débora, Blesa Joaquim, Duviella Eric, Rajaoarisoa Lala

机构信息

Supervision, Safety and Automatic Control Research Center (CS2AC), Universitat Politècnica de Catalunya, Gaia Building, Rambla Sant Nebridi, 22, 08222 Terrassa, Spain.

IMT Nord Europe, Université de Lille, CERI Digital Systems, F-59000 Lille, France.

出版信息

Sensors (Basel). 2021 Nov 13;21(22):7551. doi: 10.3390/s21227551.

Abstract

This article presents a new data-driven method for locating leaks in water distribution networks (WDNs). It is triggered after a leak has been detected in the WDN. The proposed approach is based on the use of inlet pressure and flow measurements, other pressure measurements available at some selected inner nodes of the WDN, and the topological information of the network. A reduced-order model structure is used to calculate non-leak pressure estimations at sensed inner nodes. Residuals are generated using the comparison between these estimations and leak pressure measurements. In a leak scenario, it is possible to determine the relative incidence of a leak in a node by using the network topology and what it means to correlate the probable leaking nodes with the available residual information. Topological information and residual information can be integrated into a likelihood index used to determine the most probable leak node in the WDN at a given instant or, through applying the Bayes' rule, in a time horizon. The likelihood index is based on a new incidence factor that considers the most probable path of water from reservoirs to pressure sensors and potential leak nodes. In addition, a pressure sensor validation method based on pressure residuals that allows the detection of sensor faults is proposed.

摘要

本文提出了一种新的数据驱动方法,用于定位供水管网(WDN)中的泄漏点。该方法在供水管网中检测到泄漏后启动。所提出的方法基于进水压力和流量测量、在供水管网一些选定内部节点处可获得的其他压力测量以及管网的拓扑信息。使用降阶模型结构来计算在感测到的内部节点处的无泄漏压力估计值。通过比较这些估计值与泄漏压力测量值来生成残差。在泄漏情况下,可以利用管网拓扑以及将可能的泄漏节点与可用残差信息相关联的意义,来确定节点中泄漏的相对发生率。拓扑信息和残差信息可以整合到一个似然指数中,用于确定在给定时刻供水管网中最可能的泄漏节点,或者通过应用贝叶斯规则,在一个时间范围内确定。似然指数基于一个新的关联因子,该因子考虑了从水库到压力传感器和潜在泄漏节点的最可能水流路径。此外,还提出了一种基于压力残差的压力传感器验证方法,该方法可以检测传感器故障。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f76c/8625422/2d8eb060c427/sensors-21-07551-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验