Klein Martin, Erni Daniel, Rueter Dirk
Institute of Measurement Engineering and Sensor Technology, University of Applied Sciences Ruhr West, D-45407 Mülheim an der Ruhr, Germany.
General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, and CENIDE-Center for Nanointegration Duisburg-Essen, D-47048 Duisburg, Germany.
Sensors (Basel). 2021 Nov 20;21(22):7725. doi: 10.3390/s21227725.
Magnetic induction tomography (MIT) is a contactless, low-energy method used to visualize the conductivity distribution inside a body under examination. A particularly demanding task is the three-dimensional (3D) imaging of voluminous bodies in the biomedical impedance regime. While successful MIT simulations have been reported for this regime, practical demonstration over the entire depth of weakly conductive bodies is technically difficult and has not yet been reported, particularly in terms of more realistic requirements. Poor sensitivity in the central regions critically affects the measurements. However, a recently simulated MIT scanner with a sinusoidal excitation field topology promises improved sensitivity (>20 dB) from the interior. On this basis, a large and fast 3D MIT scanner was practically realized in this study. Close agreement between theoretical forward calculations and experimental measurements underline the technical performance of the sensor system, and the previously only simulated progress is hereby confirmed. This allows 3D reconstructions from practical measurements to be presented over the entire depth of a voluminous body phantom with tissue-like conductivity and dimensions similar to a human torso. This feasibility demonstration takes MIT a step further toward the quick 3D mapping of a low conductive and voluminous object, for example, for rapid, harmless and contactless thorax or lung diagnostics.
磁感应断层成像(MIT)是一种非接触式、低能量的方法,用于可视化被检查体内的电导率分布。一项特别具有挑战性的任务是在生物医学阻抗范围内对大量物体进行三维(3D)成像。虽然已经报道了针对该范围的成功MIT模拟,但在技术上难以对弱导电体的整个深度进行实际演示,并且尚未见报道,特别是在更现实的要求方面。中心区域的灵敏度较差严重影响测量结果。然而,最近模拟的具有正弦激励场拓扑结构的MIT扫描仪有望从内部提高灵敏度(>20 dB)。在此基础上,本研究实际实现了一种大型快速3D MIT扫描仪。理论正向计算与实验测量之间的紧密一致性突显了传感器系统的技术性能,从而证实了之前仅为模拟的进展。这使得能够从实际测量中对具有类似组织电导率和尺寸与人躯干相似的大量体模的整个深度进行3D重建。这种可行性演示使MIT朝着快速对低导电且大量的物体进行3D映射迈进了一步,例如用于快速、无害且非接触式的胸部或肺部诊断。