Suppr超能文献

确定酰基辅酶 A 依赖的蛋白(MmcB)在丝裂霉素生物合成中进行的修饰的蛋白-蛋白相互作用。

Determination of the Protein-Protein Interactions within Acyl Carrier Protein (MmcB)-Dependent Modifications in the Biosynthesis of Mitomycin.

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Molecules. 2021 Nov 10;26(22):6791. doi: 10.3390/molecules26226791.

Abstract

Mitomycin has a unique chemical structure and contains densely assembled functionalities with extraordinary antitumor activity. The previously proposed mitomycin C biosynthetic pathway has caused great attention to decipher the enzymatic mechanisms for assembling the pharmaceutically unprecedented chemical scaffold. Herein, we focused on the determination of acyl carrier protein (ACP)-dependent modification steps and identification of the protein-protein interactions between MmcB (ACP) with the partners in the early-stage biosynthesis of mitomycin C. Based on the initial genetic manipulation consisting of gene disruption and complementation experiments, genes , , and were identified as the essential functional genes in the mitomycin C biosynthesis, respectively. Further integration of biochemical analysis elucidated that MitE catalyzed CoA ligation of 3-amino-5-hydroxy-bezonic acid (AHBA), MmcB-tethered AHBA triggered the biosynthesis of mitomycin C, and both MitB and MitF were MmcB-dependent tailoring enzymes involved in the assembly of mitosane. Aiming at understanding the poorly characterized protein-protein interactions, the pull-down assay was carried out by monitoring MmcB individually with MitB and MitF. The observed results displayed the clear interactions between MmcB and MitB and MitF. The surface plasmon resonance (SPR) biosensor analysis further confirmed the protein-protein interactions of MmcB with MitB and MitF, respectively. Taken together, the current genetic and biochemical analysis will facilitate the investigations of the unusual enzymatic mechanisms for the structurally unique compound assembly and inspire attempts to modify the chemical scaffold of mitomycin family antibiotics.

摘要

丝裂霉素具有独特的化学结构,包含高度聚集的功能基团,具有非凡的抗肿瘤活性。先前提出的丝裂霉素 C 生物合成途径引起了人们极大的关注,以阐明组装具有前所未有的药物化学支架的酶促机制。在此,我们专注于确定酰基辅酶 A(ACP)依赖性修饰步骤,并鉴定丝裂霉素 C 早期生物合成中 MmcB(ACP)与伙伴之间的蛋白-蛋白相互作用。基于包括基因敲除和互补实验在内的初步遗传操作,分别鉴定了基因、、和 是丝裂霉素 C 生物合成的必需功能基因。进一步整合生化分析表明,MitE 催化 3-氨基-5-羟基苯并酸(AHBA)的 CoA 连接,MmcB 连接的 AHBA 触发丝裂霉素 C 的生物合成,而 MitB 和 MitF 都是 MmcB 依赖性的修饰酶,参与米托桑的组装。为了理解描述不足的蛋白-蛋白相互作用,通过单独监测 MmcB 与 MitB 和 MitF 进行了下拉测定。观察到的结果显示了 MmcB 与 MitB 和 MitF 之间的明确相互作用。表面等离子体共振(SPR)生物传感器分析进一步证实了 MmcB 与 MitB 和 MitF 的蛋白-蛋白相互作用。总之,目前的遗传和生化分析将有助于研究结构独特化合物组装的异常酶促机制,并激发对米托霉素类抗生素化学支架进行修饰的尝试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afba/8621148/5ffa25ca6257/molecules-26-06791-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验