Suppr超能文献

使用图卷积网络进行药物治疗用途分类预测与药物重定位

Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks.

作者信息

Chipofya Mapopa, Tayara Hilal, Chong Kil To

机构信息

Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.

School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea.

出版信息

Pharmaceutics. 2021 Nov 10;13(11):1906. doi: 10.3390/pharmaceutics13111906.

Abstract

An important stage in the process of discovering new drugs is when candidate molecules are tested of their efficacy. It is reported that testing drug efficacy empirically costs billions of dollars in the drug discovery pipeline. As a mechanism of expediting this process, researchers have resorted to using computational methods to predict the action of molecules in silico. Here, we present a way of predicting the therapeutic-use class of drugs from chemical structures only using graph convolutional networks. In comparison with existing methods which use fingerprints or images as training samples, our approach has yielded better results in all metrics under consideration. In particular, validation accuracy increased from 83-88% to 86-90% for single label tasks. Similarly, the model achieved an accuracy of over 88% on new test data. Finally, our multi-label classification model made new predictions which indicated that some of the drugs could have other therapeutic uses other than those indicated in the dataset. We performed a literature-based evaluation of these predictions and found evidence that validates them. This renders the model a potential tool to be used in search of drugs that are candidates for repurposing.

摘要

发现新药过程中的一个重要阶段是对候选分子的疗效进行测试。据报道,在药物研发流程中,凭经验测试药物疗效要花费数十亿美元。作为加快这一过程的一种机制,研究人员已诉诸使用计算方法在计算机上预测分子的作用。在此,我们提出一种仅使用图卷积网络从化学结构预测药物治疗用途类别的方法。与使用指纹或图像作为训练样本的现有方法相比,我们的方法在所有考虑的指标上都取得了更好的结果。特别是,对于单标签任务,验证准确率从83 - 88%提高到了86 - 90%。同样,该模型在新测试数据上的准确率超过了88%。最后,我们的多标签分类模型做出了新的预测,表明某些药物可能具有数据集中所示用途以外的其他治疗用途。我们基于文献对这些预测进行了评估,并找到了证实它们的证据。这使得该模型成为一种潜在工具,可用于寻找有重新用途潜力的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2d9/8622176/1dc2f9bc151a/pharmaceutics-13-01906-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验