College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, Shandong,China.
Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University Jinan 250033,China | College of Computer Science and Technology, China University of Petroleum, Qingdao 266580, Shandong, China.
Comb Chem High Throughput Screen. 2022;25(4):634-641. doi: 10.2174/1386207324666210215101825.
Drug development requires a lot of money and time, and the outcome of the challenge is unknown. So, there is an urgent need for researchers to find a new approach that can reduce costs. Therefore, the identification of drug-target interactions (DTIs) has been a critical step in the early stages of drug discovery. These computational methods aim to narrow the search space for novel DTIs and to elucidate the functional background of drugs. Most of the methods developed so far use binary classification to predict the presence or absence of interactions between the drug and the target. However, it is more informative but also more challenging to predict the strength of the binding between a drug and its target. If the strength is not strong enough, such a DTI may not be useful. Hence, the development of methods to predict drug-target affinity (DTA) is of significant importance Method: We have improved the GraphDTA model from a dual-channel model to a triple-channel model. We interpreted the target/protein sequences as time series and extracted their features using the LSTM network. For the drug, we considered both the molecular structure and the local chemical background, retaining the four variant networks used in GraphDTA to extract the topological features of the drug and capturing the local chemical background of the atoms in the drug by using BiGRU. Thus, we obtained the latent features of the target and two latent features of the drug. The connection of these three feature vectors is then inputted into a 2 layer FC network, and a valuable binding affinity is the output.
We used the Davis and Kiba datasets, using 80% of the data for training and 20% of the data for validation. Our model showed better performance when compared with the experimental results of GraphDTA Conclusion: In this paper, we altered the GraphDTA model to predict drug-target affinity. It represents the drug as a graph and extracts the two-dimensional drug information using a graph convolutional neural network. Simultaneously, the drug and protein targets are represented as a word vector, and the convolutional neural network is used to extract the time-series information of the drug and the target. We demonstrate that our improved method has better performance than the original method. In particular, our model has better performance in the evaluation of benchmark databases.
药物研发需要大量的资金和时间,且结果具有不确定性。因此,研究人员迫切需要找到一种新方法来降低成本。因此,鉴定药物-靶点相互作用(DTIs)一直是药物发现早期阶段的关键步骤。这些计算方法旨在缩小新的 DTIs 的搜索空间,并阐明药物的功能背景。迄今为止,大多数开发的方法都使用二进制分类来预测药物与靶点之间相互作用的存在或不存在。然而,预测药物与其靶点之间的结合强度更具信息量,但也更具挑战性。如果强度不够强,这样的 DTI 可能没有用。因此,开发预测药物-靶点亲和力(DTA)的方法具有重要意义。
我们从双通道模型改进了 GraphDTA 模型,使其成为三通道模型。我们将靶点/蛋白质序列解释为时间序列,并使用 LSTM 网络提取它们的特征。对于药物,我们既考虑了分子结构,也考虑了局部化学背景,保留了 GraphDTA 中使用的四个变体网络,以提取药物的拓扑特征,并通过 BiGRU 捕获药物中原子的局部化学背景。因此,我们获得了靶点的两个潜在特征和药物的两个潜在特征。然后,将这些三个特征向量的连接输入到 2 层 FC 网络中,输出有价值的结合亲和力。
我们使用 Davis 和 Kiba 数据集,使用 80%的数据进行训练,20%的数据进行验证。与 GraphDTA 的实验结果相比,我们的模型表现出更好的性能。
在本文中,我们改变了 GraphDTA 模型以预测药物-靶点亲和力。它将药物表示为一个图,并使用图卷积神经网络提取二维药物信息。同时,将药物和蛋白质靶点表示为词向量,并使用卷积神经网络提取药物和靶点的时间序列信息。我们证明了我们改进的方法比原始方法具有更好的性能。特别是,我们的模型在基准数据库的评估中表现更好。