Infectious Disease & AIDS Research Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villaroel 170, 08036 Barcelona, Spain.
Centre d'Etudes des Maladies Infectieuses et Pharmacologie Anti-Infectieuse (CEMIPAI), CNRS UAR 3725, Université de Montpellier, 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France.
Viruses. 2021 Nov 19;13(11):2312. doi: 10.3390/v13112312.
A growing number of studies indicate that mRNAs and long ncRNAs can affect protein populations by assembling dynamic ribonucleoprotein (RNP) granules. These phase-separated molecular 'sponges', stabilized by quinary (transient and weak) interactions, control proteins involved in numerous biological functions. Retroviruses such as HIV-1 form by self-assembly when their genomic RNA (gRNA) traps Gag and GagPol polyprotein precursors. Infectivity requires extracellular budding of the particle followed by maturation, an ordered processing of ∼2400 Gag and ∼120 GagPol by the viral protease (PR). This leads to a condensed gRNA-NCp7 nucleocapsid and a CAp24-self-assembled capsid surrounding the RNP. The choreography by which all of these components dynamically interact during virus maturation is one of the missing milestones to fully depict the HIV life cycle. Here, we describe how HIV-1 has evolved a dynamic RNP granule with successive weak-strong-moderate quinary NC-gRNA networks during the sequential processing of the GagNC domain. We also reveal two palindromic RNA-binding triads on NC, KxxFxxQ and QxxFxxK, that provide quinary NC-gRNA interactions. Consequently, the nucleocapsid complex appears properly aggregated for capsid reassembly and reverse transcription, mandatory processes for viral infectivity. We show that PR is sequestered within this RNP and drives its maturation/condensation within minutes, this process being most effective at the end of budding. We anticipate such findings will stimulate further investigations of quinary interactions and emergent mechanisms in crowded environments throughout the wide and growing array of RNP granules.
越来越多的研究表明,mRNA 和长非编码 RNA 可以通过组装动态核糖核蛋白 (RNP) 颗粒来影响蛋白质群体。这些相分离的分子“海绵”由五进制(瞬态和弱)相互作用稳定,控制着参与许多生物功能的蛋白质。逆转录病毒如 HIV-1 通过其基因组 RNA (gRNA) 捕获 Gag 和 GagPol 多蛋白前体时自组装形成。感染性需要颗粒的细胞外出芽,然后成熟,即病毒蛋白酶 (PR) 对约 2400 个 Gag 和约 120 个 GagPol 的有序加工。这导致浓缩的 gRNA-NCp7 核衣壳和围绕着 RNP 的 CAp24-自我组装衣壳。在病毒成熟过程中,所有这些成分动态相互作用的编排是充分描述 HIV 生命周期的缺失里程碑之一。在这里,我们描述了 HIV-1 如何在 GagNC 结构域的连续加工过程中,通过连续的弱-强-适度五进制 NC-gRNA 网络进化出一种动态的 RNP 颗粒。我们还揭示了 NC 上的两个回文 RNA 结合三联体 KxxFxxQ 和 QxxFxxK,它们提供了五进制 NC-gRNA 相互作用。因此,核衣壳复合物似乎适当地聚集在一起,用于衣壳的重新组装和逆转录,这是病毒感染性的必要过程。我们表明 PR 被隔离在这种 RNP 中,并在几分钟内驱动其成熟/浓缩,该过程在出芽结束时最为有效。我们预计这些发现将刺激对拥挤环境中五进制相互作用和新兴机制的进一步研究,这些研究涉及广泛且不断增长的 RNP 颗粒阵列。