Suppr超能文献

具有多维碳结构的协同吸附催化位点TiN/TaO用于高性能锂硫电池

Synergistic Adsorption-Catalytic Sites TiN/TaO with Multidimensional Carbon Structure to Enable High-Performance Li-S Batteries.

作者信息

Wang Chong, Lu Jian-Hao, Wang Zi-Long, Wang An-Bang, Zhang Hao, Wang Wei-Kun, Jin Zhao-Qing, Fan Li-Zhen

机构信息

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.

Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China.

出版信息

Nanomaterials (Basel). 2021 Oct 28;11(11):2882. doi: 10.3390/nano11112882.

Abstract

Lithium-sulfur (Li-S) batteries are deemed to be one of the most optimal solutions for the next generation of high-energy-density and low-cost energy storage systems. However, the low volumetric energy density and short cycle life are a bottleneck for their commercial application. To achieve high energy density for lithium-sulfur batteries, the concept of synergistic adsorptive-catalytic sites is proposed. Base on this concept, the TiN@C/S/TaO sulfur electrode with about 90 wt% sulfur content is prepared. TiN contributes its high intrinsic electron conductivity to improve the redox reaction of polysulfides, while TaO provides strong adsorption capability toward lithium polysulfides (LiPSs). Moreover, the multidimensional carbon structure facilitates the infiltration of electrolytes and the motion of ions and electrons throughout the framework. As a result, the coin Li-S cells with TiN@C/S/TaO cathode exhibit superior cycle stability with a decent capacity retention of 56.1% over 300 cycles and low capacity fading rate of 0.192% per cycle at 0.5 C. Furthermore, the pouch cells at sulfur loading of 5.3 mg cm deliver a high areal capacity of 5.8 mAh cm at low electrolyte/sulfur ratio (E/S, 3.3 μL mg), implying a high sulfur utilization even under high sulfur loading and lean electrolyte operation.

摘要

锂硫(Li-S)电池被认为是下一代高能量密度和低成本储能系统的最佳解决方案之一。然而,低体积能量密度和短循环寿命是其商业应用的瓶颈。为了实现锂硫电池的高能量密度,提出了协同吸附催化位点的概念。基于这一概念,制备了硫含量约为90 wt%的TiN@C/S/TaO硫电极。TiN凭借其高本征电子导电性促进多硫化物的氧化还原反应,而TaO对多硫化锂(LiPSs)具有很强的吸附能力。此外,多维碳结构有利于电解质的渗透以及离子和电子在整个框架中的移动。结果,具有TiN@C/S/TaO阴极的硬币型锂硫电池表现出优异的循环稳定性,在300次循环中容量保持率达56.1%,在0.5 C下每循环的低容量衰减率为0.192%。此外,硫负载量为5.3 mg cm的软包电池在低电解质/硫比(E/S,3.3 μL mg)下可提供5.8 mAh cm的高面积容量,这意味着即使在高硫负载和贫电解质操作下也具有高硫利用率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f59/8623583/837878589d9a/nanomaterials-11-02882-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验