Suppr超能文献

基于石墨烯-超导体混合光子集成电路的有源太赫兹调制器和慢光超材料器件

Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-Superconductor Photonic Integrated Circuits.

作者信息

Kalhor Samane, Kindness Stephen J, Wallis Robert, Beere Harvey E, Ghanaatshoar Majid, Degl'Innocenti Riccardo, Kelly Michael J, Hofmann Stephan, Joyce Hannah J, Ritchie David A, Delfanazari Kaveh

机构信息

James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.

出版信息

Nanomaterials (Basel). 2021 Nov 8;11(11):2999. doi: 10.3390/nano11112999.

Abstract

Metamaterial photonic integrated circuits with arrays of hybrid graphene-superconductor coupled split-ring resonators (SRR) capable of modulating and slowing down terahertz (THz) light are introduced and proposed. The hybrid device's optical responses, such as electromagnetic-induced transparency (EIT) and group delay, can be modulated in several ways. First, it is modulated electrically by changing the conductivity and carrier concentrations in graphene. Alternatively, the optical response can be modified by acting on the device temperature sensitivity by switching Nb from a lossy normal phase to a low-loss quantum mechanical phase below the transition temperature () of Nb. Maximum modulation depths of 57.3% and 97.61% are achieved for EIT and group delay at the THz transmission window, respectively. A comparison is carried out between the Nb-graphene-Nb coupled SRR-based devices with those of Au-graphene-Au SRRs, and significant enhancements of the THz transmission, group delay, and EIT responses are observed when Nb is in the quantum mechanical phase. Such hybrid devices with their reasonably large and tunable slow light bandwidth pave the way for the realization of active optoelectronic modulators, filters, phase shifters, and slow light devices for applications in chip-scale future communication and computation systems.

摘要

本文介绍并提出了一种超材料光子集成电路,其具有混合石墨烯 - 超导体耦合分裂环谐振器(SRR)阵列,能够调制和减慢太赫兹(THz)光。该混合器件的光学响应,如电磁诱导透明(EIT)和群延迟,可以通过多种方式进行调制。首先,通过改变石墨烯中的电导率和载流子浓度进行电调制。或者,可以通过将铌(Nb)从高于其转变温度()的有损正常相切换到低于该温度的低损耗量子力学相,来利用器件的温度敏感性修改光学响应。在太赫兹传输窗口处,EIT和群延迟的最大调制深度分别达到57.3%和97.61%。对基于Nb - 石墨烯 - Nb耦合SRR的器件与基于Au - 石墨烯 - Au SRR的器件进行了比较,当Nb处于量子力学相时,观察到太赫兹传输、群延迟和EIT响应有显著增强。这种具有相当大且可调谐慢光带宽的混合器件为实现有源光电子调制器、滤波器、移相器以及用于芯片级未来通信和计算系统的慢光器件铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/713a/8619956/452d5256759b/nanomaterials-11-02999-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验