Huang Xiangning, Keller Arturo A
Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA.
Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA.
Nanomaterials (Basel). 2021 Nov 15;11(11):3073. doi: 10.3390/nano11113073.
Surfactants are commonly used in foliar applications to enhance interactions of active ingredients with plant leaves. We employed metabolomics to understand the effects of Triton X-100 surfactant (SA) and nanomaterials (NMs) on wheat () at the molecular level. Leaves of three-week-old wheat seedlings were exposed to deionized water (DI), surfactant solution (SA), NMs-surfactant suspensions (Cu(OH) NMs and MoO NMs), and ionic-surfactant solutions (Cu IONs and Mo IONs). Wheat leaves and roots were evaluated via physiological, nutrient distribution, and targeted metabolomics analyses. SA had no impact on plant physiological parameters, however, 30+ dysregulated metabolites and 15+ perturbed metabolomic pathways were identified in wheat leaves and roots. Cu(OH) NMs resulted in an accumulation of 649.8 μg/g Cu in leaves; even with minimal Cu translocation, levels of 27 metabolites were significantly changed in roots. Due to the low dissolution of Cu(OH) NMs in SA, the low concentration of Cu IONs induced minimal plant response. In contrast, given the substantial dissolution of MoO NMs (35.8%), the corresponding high levels of Mo IONs resulted in significant metabolite reprogramming (30+ metabolites dysregulated). Aspartic acid, proline, chlorogenic acid, adenosine, ascorbic acid, phenylalanine, and lysine were significantly upregulated for MoO NMs, yet downregulated under Mo IONs condition. Surprisingly, Cu(OH) NMs stimulated wheat plant tissues more than MoO NMs. The glyoxylate/dicarboxylate metabolism (in leaves) and valine/leucine/isoleucine biosynthesis (in roots) uniquely responded to Cu(OH) NMs. Findings from this study provide novel insights on the use of surfactants to enhance the foliar application of nanoagrochemicals.
表面活性剂常用于叶面喷施,以增强活性成分与植物叶片的相互作用。我们采用代谢组学方法,从分子水平了解 Triton X - 100 表面活性剂(SA)和纳米材料(NMs)对小麦()的影响。将三周龄小麦幼苗的叶片暴露于去离子水(DI)、表面活性剂溶液(SA)、纳米材料 - 表面活性剂悬浮液(Cu(OH)纳米材料和 MoO 纳米材料)以及离子 - 表面活性剂溶液(Cu 离子和 Mo 离子)中。通过生理、养分分布和靶向代谢组学分析对小麦叶片和根系进行评估。SA 对植物生理参数没有影响,然而,在小麦叶片和根系中鉴定出 30 多种失调代谢物和 15 多条受干扰的代谢途径。Cu(OH)纳米材料导致叶片中铜积累量达 649.8 μg/g;即使铜的转运量极少,根系中 27 种代谢物的水平也发生了显著变化。由于 Cu(OH)纳米材料在 SA 中的溶解度低,低浓度的 Cu 离子引起的植物反应最小。相比之下,鉴于 MoO 纳米材料的溶解度较高(35.8%),相应的高浓度 Mo 离子导致显著的代谢物重编程(30 多种代谢物失调)。对于 MoO 纳米材料,天冬氨酸、脯氨酸、绿原酸、腺苷、抗坏血酸、苯丙氨酸和赖氨酸显著上调,但在 Mo 离子条件下则下调。令人惊讶的是,Cu(OH)纳米材料对小麦植物组织的刺激作用大于 MoO 纳米材料。乙醛酸/二羧酸代谢(在叶片中)和缬氨酸/亮氨酸/异亮氨酸生物合成(在根系中)对 Cu(OH)纳米材料有独特反应。本研究结果为利用表面活性剂增强纳米农用化学品的叶面喷施提供了新见解。