Tomov Rumen I, Mitchel-Williams Thomas B, Venezia Eleonora, Kawalec Michal, Krauz Mariusz, Kumar Ramachandran Vasant, Glowacki Bartek A
Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK.
Institute of Power Engineering-Research Institute, Mory 8, 01-330 Warsaw, Poland.
Nanomaterials (Basel). 2021 Nov 16;11(11):3095. doi: 10.3390/nano11113095.
Single-step inkjet printing infiltration with doped ceria CeYeO (YDC) and cobalt oxide (CoO) precursor inks was performed in order to modify the properties of the doped ceria interlayer in commercial (50 × 50 × 0.5 mm size) anode-supported SOFCs. The penetration of the inks throughout the LaSrCoFeO porous cathode to the GdCeO (GDC) interlayer was achieved by optimisation of the inks' rheology jetting parameters. The low-temperature calcination (750 °C) resulted in densification of the Gd-doped ceria porous interlayer as well as decoration of the cathode scaffold with nanoparticles (~20-50 nm in size). The I-V testing in pure hydrogen showed a maximum power density gain of ~20% at 700 °C and ~97% at 800 °C for the infiltrated cells. The latter effect was largely assigned to the improvement in the interfacial Ohmic resistance due to the densification of the interlayer. The EIS study of the polarisation losses of the reference and infiltrated cells revealed a reduction in the activation polarisations losses at 700 °C due to the nano-decoration of the LaSrCoFeO scaffold surface. Such was not the case at 800 °C, where the drop in Ohmic losses was dominant. This work demonstrated that single-step inkjet printing infiltration, a non-disruptive, low-cost technique, can produce significant and scalable performance enhancements in commercial anode-supported SOFCs.
为了改变商用(尺寸为50×50×0.5毫米)阳极支撑固体氧化物燃料电池中掺杂二氧化铈中间层的性能,采用单步喷墨打印法,用掺杂二氧化铈CeYeO(YDC)和氧化钴(CoO)前驱体墨水进行渗透。通过优化墨水的流变学喷射参数,使墨水贯穿LaSrCoFeO多孔阴极渗透到GdCeO(GDC)中间层。低温煅烧(750℃)导致钆掺杂二氧化铈多孔中间层致密化,以及用纳米颗粒(尺寸约为20 - 50纳米)装饰阴极支架。在纯氢气中的I - V测试表明,对于渗透后的电池,在700℃时最大功率密度增益约为20%,在800℃时约为97%。后一种效应主要归因于中间层致密化导致的界面欧姆电阻的改善。对参比电池和渗透电池极化损耗的电化学阻抗谱研究表明,由于LaSrCoFeO支架表面的纳米装饰,在700℃时活化极化损耗降低。在800℃时情况并非如此,此时欧姆损耗的下降占主导。这项工作表明,单步喷墨打印渗透是一种无损、低成本的技术,可以在商用阳极支撑固体氧化物燃料电池中显著且可扩展地提高性能。