Suppr超能文献

利用 2007-2015 年营养日的结构、患者和营养相关数据的全球和国家特定竞争风险分析预测入院时的住院时间。

Predicting Hospital Length of Stay at Admission Using Global and Country-Specific Competing Risk Analysis of Structural, Patient, and Nutrition-Related Data from nutritionDay 2007-2015.

机构信息

Department of Health Economics, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria.

nutritionDay Worldwide, 1090 Vienna, Austria.

出版信息

Nutrients. 2021 Nov 16;13(11):4111. doi: 10.3390/nu13114111.

Abstract

Hospital length of stay (LOS) is an important clinical and economic outcome and knowing its predictors could lead to better planning of resources needed during hospitalization. This analysis sought to identify structure, patient, and nutrition-related predictors of LOS available at the time of admission in the global nutritionDay dataset and to analyze variations by country for countries with > 750. Data from 2006-2015 ( = 155,524) was utilized for descriptive and multivariable cause-specific Cox proportional hazards competing-risks analyses of total LOS from admission. Time to event analysis on 90,480 complete cases included: discharged ( = 65,509), transferred ( = 11,553), or in-hospital death ( = 3199). The median LOS was 6 days (25th and 75th percentile: 4-12). There is robust evidence that LOS is predicted by patient characteristics such as age, affected organs, and comorbidities in all three outcomes. Having lost weight in the last three months led to a longer time to discharge (Hazard Ratio (HR) 0.89; 99.9% Confidence Interval (CI) 0.85-0.93), shorter time to transfer (HR 1.40; 99.9% CI 1.24-1.57) or death (HR 2.34; 99.9% CI 1.86-2.94). The impact of having a dietician and screening patients at admission varied by country. Despite country variability in outcomes and LOS, the factors that predict LOS at admission are consistent globally.

摘要

住院时间(LOS)是一个重要的临床和经济结果,了解其预测因素可以更好地规划住院期间所需的资源。本分析旨在确定全球营养日数据集中入院时可用的结构、患者和营养相关 LOS 的预测因素,并分析 LOS 预测因素因国家而异,对于 LOS 大于 750 的国家进行分析。利用 2006-2015 年的数据(n = 155524)进行描述性和多变量特定原因 Cox 比例风险竞争风险分析,以确定从入院到总 LOS 的时间。对 90480 例完整病例进行时间事件分析,包括出院(n = 65509)、转院(n = 11553)或院内死亡(n = 3199)。住院时间中位数为 6 天(25 分位和 75 分位:4-12)。有强有力的证据表明,在所有三种结局中,LOS 均由患者特征(如年龄、受影响的器官和合并症)预测。在过去三个月内体重减轻会导致出院时间延长(风险比(HR)0.89;99.9%置信区间(CI)0.85-0.93)、转院时间缩短(HR 1.40;99.9%CI 1.24-1.57)或死亡(HR 2.34;99.9%CI 1.86-2.94)。入院时营养师和筛查患者的影响因国家而异。尽管结局和 LOS 存在国家差异,但入院时预测 LOS 的因素在全球范围内是一致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb84/8624242/bc85e4beb4ad/nutrients-13-04111-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验