Centre for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain; University of Cuenca, Cuenca, Ecuador.
Valencian International University, Valencia, Spain.
Comput Biol Med. 2022 Feb;141:105038. doi: 10.1016/j.compbiomed.2021.105038. Epub 2021 Nov 17.
Electrophysiological alterations of the myocardium caused by acute ischemia constitute a pro-arrhythmic substrate for the generation of potentially lethal arrhythmias. Experimental evidence has shown that the main components of acute ischemia that induce these electrophysiological alterations are hyperkalemia, hypoxia (or anoxia in complete artery occlusion), and acidosis. However, the influence of each ischemic component on the likelihood of reentry is not completely established. Moreover, the role of the His-Purkinje system (HPS) in the initiation and maintenance of arrhythmias is not completely understood. In the present work, we investigate how the three components of ischemia affect the vulnerable window (VW) for reentry using computational simulations. In addition, we analyze the role of the HPS on arrhythmogenesis. A 3D biventricular/torso human model that includes a realistic geometry of the central and border ischemic zones with one of the most electrophysiologically detailed model of ischemia to date, as well as a realistic cardiac conduction system, were used to assess the VW for reentry. Four scenarios of ischemic severity corresponding to different minutes after coronary artery occlusion were simulated. Our results suggest that ischemic severity plays an important role in the generation of reentries. Indeed, this is the first 3D simulation study to show that ventricular arrhythmias could be generated under moderate ischemic conditions, but not in mild and severe ischemia. Moreover, our results show that anoxia is the ischemic component with the most significant effect on the width of the VW. Thus, a change in the level of anoxia from moderate to severe leads to a greater increment in the VW (40 ms), in comparison with the increment of 20 ms and 35 ms produced by the individual change in the level of hyperkalemia and acidosis, respectively. Finally, the HPS was a necessary element for the generation of approximately 17% of reentries obtained. The retrograde conduction from the myocardium to HPS in the ischemic region, conduction blocks in discrete sections of the HPS, and the degree of ischemia affecting Purkinje cells, are suggested as mechanisms that favor the generation of ventricular arrhythmias.
急性缺血引起的心肌电生理改变构成了潜在致命性心律失常发生的促心律失常基质。实验证据表明,诱导这些电生理改变的急性缺血的主要成分是高钾血症、缺氧(或完全动脉闭塞时的缺氧)和酸中毒。然而,每种缺血成分对折返可能性的影响尚未完全确定。此外,希氏-浦肯野系统(HPS)在心律失常的发生和维持中的作用也不完全清楚。在本工作中,我们使用计算模拟研究了三种缺血成分如何影响折返的易损窗口(VW)。此外,我们分析了 HPS 在心律失常发生中的作用。使用包括目前最具电生理细节的缺血模型之一的中央和边缘缺血区的真实几何形状的 3D 双心室/体模型,以及一个真实的心脏传导系统,来评估折返的 VW。模拟了与冠状动脉闭塞后不同分钟对应的四种缺血严重程度场景。我们的结果表明,缺血严重程度在折返的发生中起着重要作用。事实上,这是第一个 3D 模拟研究表明,在中度缺血条件下可能会产生室性心律失常,但在轻度和重度缺血时不会产生。此外,我们的结果表明,缺氧是对 VW 宽度影响最大的缺血成分。因此,与单独改变高钾血症和酸中毒水平分别导致 VW 增加 20 ms 和 35 ms 相比,缺氧水平从中度变为重度导致 VW 增加 40 ms。最后,HPS 是产生大约 17%折返所需的必要元素。缺血区心肌向 HPS 的逆行传导、HPS 离散段的传导阻滞以及影响浦肯野细胞的缺血程度,被认为是有利于室性心律失常发生的机制。