Suppr超能文献

作为动作电位离子通道成分“能量记忆”的短期可塑性。

Short-term plasticity as 'energetic memory' of ion channel components of action potential.

作者信息

Ben Abu Yuval, Wolfson Ira

机构信息

Physics Unit, Sapir Academic College, Sderot, Hof Ashkelon 79165, Israel.

Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, UK.

出版信息

R Soc Open Sci. 2024 Jun 5;11(6):231420. doi: 10.1098/rsos.231420. eCollection 2024 Jun.

Abstract

Information transfer in the nervous system is traditionally understood by the transmission of action potentials along neuronal dendrites, with ion channels in the membrane as the basic unit operator for their creation and propagation. We present here a new model for the multiphysics behaviour of ion channels and the action potential dynamics in nervous and other signal-transmitting systems. This model is based on the long-term suppression of an action potential as a response to mechanical input. While other models focus on electrical aspects of the action potential, an increasing body of experiments highlights its electro-mechanical nature and points in particular towards an alteration of the action potential when subjected to a mechanical input. Here, we propose a new phenomenological framework able to capture the mechanical aspect of ion channel dynamics and the resulting effect on the overall electrophysiology of the membrane. The model is introduced here through a set of coupled differential equations that describe the system while agreeing with the general findings of the experiments that support an electro-mechanical model. It also confirms that transient quasi-static mechanical loads reversibly affect the amplitude and rate of change of neuronal action potentials, which are smaller and slower under indentation loading conditions. Changes after the loading release are also reversible, albeit on a different time scale.

摘要

传统上,神经系统中的信息传递被理解为动作电位沿神经元树突的传输,膜中的离子通道作为其产生和传播的基本单元。我们在此提出一种新模型,用于描述离子通道的多物理行为以及神经和其他信号传输系统中的动作电位动力学。该模型基于动作电位对机械输入的长期抑制。虽然其他模型侧重于动作电位的电学方面,但越来越多的实验强调了其机电性质,特别是指出在受到机械输入时动作电位会发生改变。在此,我们提出一个新的现象学框架,能够捕捉离子通道动力学的机械方面及其对膜整体电生理学的影响。该模型通过一组耦合微分方程在此引入,这些方程描述了该系统,同时与支持机电模型的实验的一般发现一致。它还证实,瞬态准静态机械负载会可逆地影响神经元动作电位的幅度和变化率,在压痕负载条件下,动作电位的幅度更小且变化率更慢。负载释放后的变化也是可逆的,尽管是在不同的时间尺度上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f20/11296076/c5b1b315b754/rsos.231420.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验