Suppr超能文献

不平衡数据集中宏观和微观遗传环境敏感性的估计

Estimation of macro- and micro-genetic environmental sensitivity in unbalanced datasets.

作者信息

Madsen M D, van der Werf J, Börner V, Mulder H A, Clark S

机构信息

School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.

出版信息

Animal. 2021 Dec;15(12):100411. doi: 10.1016/j.animal.2021.100411. Epub 2021 Nov 24.

Abstract

Genotype-by-environment interaction is caused by variation in genetic environmental sensitivity (GES), which can be subdivided into macro- and micro-GES. Macro-GES is genetic sensitivity to macro-environments (definable environments often shared by groups of animals), while micro-GES is genetic sensitivity to micro-environments (individual environments). A combined reaction norm and double hierarchical generalised linear model (RN-DHGLM) allows for simultaneous estimation of base genetic, macro- and micro-GES effects. The accuracy of variance components estimated using a RN-DHGLM has been explicitly studied for balanced data and recommendation of a data size with a minimum of 100 sires with at least 100 offspring each have been made. In the current study, the data size (numbers of sires and progeny) and structure requirements of the RN-DHGLM were investigated for two types of unbalanced datasets. Both datasets had a variable number of offspring per sire, but one dataset also had a variable number of offspring within macro-environments. The accuracy and bias of the estimated macro- and micro-GES effects and the estimated breeding values (EBVs) obtained using the RN-DHGLM depended on the data size. Reasonably accurate and unbiased estimates were obtained with data containing 500 sires with 20 offspring or 100 sires with 50 offspring, regardless of the data structure. Variable progeny group sizes, alone or in combination with an unequal number of offspring within macro-environments, had little impact on the dispersion of the EBVs or the bias and accuracy of variance component estimation, but resulted in lower accuracies of the EBVs. Compared to genetic correlations of zero, a genetic correlation of 0.5 between base genetic, macro- and micro-GES components resulted in a slight decrease in the percentage of replicates that converged out of 100 replicates, but had no effect on the dispersion and accuracy of variance component estimation or the dispersion of the EBVs. The results show that it is possible to apply the RN-DHGLM to unbalanced datasets to obtain estimates of variance due to macro- and micro-GES. Furthermore, the levels of accuracy and bias of variance estimates when analysing macro- and micro-GES simultaneously are determined by average family size, with limited impact from variability in family size and/or cohort size. This creates opportunities for the use of field data from populations with unbalanced data structures when estimating macro- and micro-GES.

摘要

基因型与环境互作是由遗传环境敏感性(GES)的变异引起的,GES可细分为宏观GES和微观GES。宏观GES是对宏观环境(通常由动物群体共享的可定义环境)的遗传敏感性,而微观GES是对微观环境(个体环境)的遗传敏感性。结合反应规范和双层次广义线性模型(RN-DHGLM)可以同时估计基础遗传、宏观和微观GES效应。对于平衡数据,已明确研究了使用RN-DHGLM估计方差成分的准确性,并建议数据量至少为100个父本,每个父本至少有100个后代。在当前研究中,针对两种类型的不平衡数据集,研究了RN-DHGLM的数据量(父本和后代数量)和结构要求。两个数据集每个父本的后代数量都不同,但其中一个数据集在宏观环境中的后代数量也不同。使用RN-DHGLM获得的估计宏观和微观GES效应以及估计育种值(EBV)的准确性和偏差取决于数据量。无论数据结构如何,包含500个有20个后代的父本或100个有50个后代的父本的数据都能获得合理准确且无偏差的估计。可变的后代组大小,单独或与宏观环境中不等数量的后代组合,对EBV的离散度或方差成分估计的偏差和准确性影响很小,但会导致EBV的准确性降低。与零遗传相关性相比,基础遗传、宏观和微观GES成分之间的遗传相关性为0.5会导致100次重复中收敛的重复百分比略有下降,但对方差成分估计的离散度和准确性或EBV的离散度没有影响。结果表明,可以将RN-DHGLM应用于不平衡数据集,以获得宏观和微观GES引起的方差估计。此外,同时分析宏观和微观GES时方差估计的准确性和偏差水平由平均家系大小决定,家系大小和/或群组大小的变异性影响有限。这为在估计宏观和微观GES时使用来自数据结构不平衡群体的现场数据创造了机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验