Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Bedford Park, SA, 5001, Adelaide, Australia; Caring Futures Institute, Flinders University, Bedford Park, SA, 5042, Adelaide, Australia.
Department of Ophthalmology, Emory University School of Medicine, 1365B Clifton Rd NE, Atlanta, GA, 30322, United States; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, United States; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, United States.
Exp Eye Res. 2022 Jan;214:108866. doi: 10.1016/j.exer.2021.108866. Epub 2021 Nov 25.
Myopia, or nearsightedness, is the most common form of refractive abnormality and is characterized by excessive ocular elongation in relation to ocular power. Retinal neurotransmitter signaling, including dopamine, is implicated in myopic ocular growth, but the visual pathways that initiate and sustain myopia remain unclear. Melanopsin-expressing retinal ganglion cells (mRGCs), which detect light, are important for visual function, and have connections with retinal dopamine cells. Here, we investigated how mRGCs influence normal and myopic refractive development using two mutant mouse models: Opn4 mice that lack functional melanopsin photopigments and intrinsic mRGC responses but still receive other photoreceptor-mediated input to these cells; and Opn4 mice that lack intrinsic and photoreceptor-mediated mRGC responses due to mRGC cell death. In mice with intact vision or form-deprivation, we measured refractive error, ocular properties including axial length and corneal curvature, and the levels of retinal dopamine and its primary metabolite, L-3,4-dihydroxyphenylalanine (DOPAC). Myopia was measured as a myopic shift, or the difference in refractive error between the form-deprived and contralateral eyes. We found that Opn4 mice had altered normal refractive development compared to Opn4 wildtype mice, starting ∼4D more myopic but developing ∼2D greater hyperopia by 16 weeks of age. Consistent with hyperopia at older ages, 16 week-old Opn4 mice also had shorter eyes compared to Opn4 mice (3.34 vs 3.42 mm). Opn4 mice, however, were more hyperopic than both Opn4 and Opn4 mice across development ending with even shorter axial lengths. Despite these differences, both Opn4 and Opn4 mice had ∼2D greater myopic shifts in response to form-deprivation compared to Opn4 mice. Furthermore, when vision was intact, dopamine and DOPAC levels were similar between Opn4 and Opn4 mice, but higher in Opn4 mice, which differed with age. However, form-deprivation reduced retinal dopamine and DOAPC by ∼20% in Opn4 compared to Opn4 mice but did not affect retinal dopamine and DOPAC in Opn4 mice. Lastly, systemically treating Opn4 mice with the dopamine precursor L-DOPA reduced their form-deprivation myopia by half compared to non-treated mice. Collectively our findings show that disruption of retinal melanopsin signaling alters the rate and magnitude of normal refractive development, yields greater susceptibility to form-deprivation myopia, and changes dopamine signaling. Our results suggest that mRGCs participate in the eye's response to myopigenic stimuli, acting partly through dopaminergic mechanisms, and provide a potential therapeutic target underling myopia progression. We conclude that proper mRGC function is necessary for correct refractive development and protection from myopia progression.
近视,又称远视,是最常见的屈光不正形式,其特征是眼球相对于眼球力量的过度伸长。视网膜神经递质信号,包括多巴胺,与近视眼球生长有关,但启动和维持近视的视觉途径仍不清楚。表达黑素细胞视蛋白的视网膜神经节细胞(mRGCs),可检测光线,对视觉功能很重要,并且与视网膜多巴胺细胞有联系。在这里,我们使用两种突变小鼠模型研究了 mRGCs 如何影响正常和近视屈光发育:缺乏功能性黑素细胞视蛋白光感受器和内在 mRGC 反应但仍能接收这些细胞其他光感受器介导输入的 Opn4 小鼠;以及由于 mRGC 细胞死亡而缺乏内在和光感受器介导的 mRGC 反应的 Opn4 小鼠。在具有完整视力或形觉剥夺的小鼠中,我们测量了屈光不正、包括眼轴和角膜曲率在内的眼部特性,以及视网膜多巴胺及其主要代谢产物 L-3,4-二羟基苯丙氨酸(DOPAC)的水平。近视的测量方法是近视移位,即形觉剥夺眼和对侧眼之间的屈光不正差异。我们发现,与 Opn4 野生型小鼠相比,Opn4 小鼠的正常屈光发育发生了改变,开始时近视 4D 以上,但到 16 周时远视增加 2D。与老年时远视一致,16 周龄的 Opn4 小鼠的眼睛也比 Opn4 小鼠短(3.34 毫米对 3.42 毫米)。然而,在整个发育过程中,Opn4 小鼠比 Opn4 和 Opn4 小鼠都更远视,最终眼轴更短。尽管存在这些差异,但与 Opn4 小鼠相比,Opn4 和 Opn4 小鼠在形觉剥夺后的近视移位都增加了 2D。此外,当视力正常时,Opn4 和 Opn4 小鼠之间的多巴胺和 DOPAC 水平相似,但 Opn4 小鼠的水平较高,且随年龄变化。然而,与 Opn4 小鼠相比,形觉剥夺使 Opn4 小鼠的视网膜多巴胺和 DOAPC 减少了约 20%,但对 Opn4 小鼠的视网膜多巴胺和 DOPAC 没有影响。最后,用多巴胺前体 L-DOPA 系统治疗 Opn4 小鼠可使它们的形觉剥夺性近视减少一半,而非治疗小鼠则没有。总的来说,我们的发现表明,视网膜黑素细胞视蛋白信号的破坏改变了正常屈光发育的速度和幅度,增加了对形觉剥夺性近视的易感性,并改变了多巴胺信号。我们的结果表明,mRGCs 参与了眼睛对近视刺激的反应,部分通过多巴胺能机制发挥作用,并为近视进展提供了潜在的治疗靶点。我们得出结论,适当的 mRGC 功能对于正确的屈光发育和防止近视进展是必要的。