Goethals Sarah, Louboutin Awen, Hamlaoui Samy, Quetu Tom, Virgili Samuele, Goldin Matias Alejandro, Baranton Konogan, Marre Olivier
Groupe Lens Innovation, R&D Life and Light Science, EssilorLuxottica, Paris, France.
Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
Sci Adv. 2025 Aug 8;11(32):eadq6320. doi: 10.1126/sciadv.adq6320.
Eye growth is regulated by the visual input. Many studies suggest that the retina can detect whether a visual image is focused in front of or behind the back of the eye and modulate eye growth to bring it back to focus. How can the retina distinguish between these two types of defocus? Here, we simulated how eye optics transforms natural images and recorded how the isolated retina responds to different types of simulated defocus. We found that some ganglion cell types could distinguish between an image focused in front of or behind the retina by estimating spatial contrast. Aberrations in the eye optics made spatial contrast, but not luminance, a reliable cue to distinguish these two types of defocus. Our results suggest a mechanism for how the retina can estimate the sign of defocus and provide an explanation for several results aiming at mitigating strong myopia by slowing down eye growth.
眼睛的生长受视觉输入调节。许多研究表明,视网膜能够检测视觉图像是聚焦在眼球前方还是后方,并调节眼睛的生长以使图像重新聚焦。视网膜如何区分这两种类型的散焦呢?在此,我们模拟了眼睛光学系统如何变换自然图像,并记录了离体视网膜对不同类型模拟散焦的反应。我们发现,一些神经节细胞类型可以通过估计空间对比度来区分聚焦在视网膜前方或后方的图像。眼睛光学系统中的像差使得空间对比度而非亮度成为区分这两种类型散焦的可靠线索。我们的研究结果提出了一种视网膜如何估计散焦符号的机制,并为旨在通过减缓眼睛生长来减轻高度近视的多项研究结果提供了解释。
Curr Biol. 2024-7-22
Cureus. 2025-7-11
Cochrane Database Syst Rev. 2017-2-15
Exp Eye Res. 2021-1
2025-1
Cochrane Database Syst Rev. 2014-6-17
Cochrane Database Syst Rev. 2025-6-16
Cochrane Database Syst Rev. 2010-5-12
Front Cell Dev Biol. 2024-12-20
Ophthalmic Physiol Opt. 2025-3
Annu Rev Vis Sci. 2024-9
Biomed Opt Express. 2023-6-6
Ophthalmic Physiol Opt. 2023-5
Sci Rep. 2022-12-15
Nat Commun. 2022-9-22