Suppr超能文献

使用监督式机器学习技术预测抗生素的定性抗生物膜活性。

Prediction of qualitative antibiofilm activity of antibiotics using supervised machine learning techniques.

作者信息

Shaban Taqwa F, Alkawareek Mahmoud Y

机构信息

School of Pharmacy, The University of Jordan, Amman, Jordan.

School of Pharmacy, The University of Jordan, Amman, Jordan.

出版信息

Comput Biol Med. 2022 Jan;140:105065. doi: 10.1016/j.compbiomed.2021.105065. Epub 2021 Nov 24.

Abstract

Although biofilm-specific antibiotic susceptibility assays are available, they are time-consuming and resource-intensive, and hence they are not usually performed in clinical settings. Herein, we introduce a machine learning-based predictive modeling approach that uses routinely available and easily accessible data to qualitatively predict in vitro antibiofilm activity of antibiotics with relatively high accuracy. Three optimized models based on logistic regression, decision tree, and random forest algorithms were successfully developed in this study using data manually collected from published literature. In these models, independent variables that serve as significant predictors of antibiofilm activity are minimum inhibitory concentration, bacterial Gram type, biofilm formation method, in addition to antibiotic's mechanism of action, molecular weight, and pKa. The cross-validation method showed that the optimized models exhibit prediction accuracy of 67% ± 6.1% for the logistic regression model, 73% ± 5.8% for the decision tree model, and 74% ± 5% for the random forest model. However, the one-way ANOVA test revealed that the difference in prediction accuracy between the 3 models is not statistically significant, and hence they can be considered to have comparable performance. The presented modeling approach can serve as an alternative to the resource-intensive biofilm assays to rapidly and properly manage biofilm-associated infections, especially in resource-limited clinical settings.

摘要

尽管有针对生物膜的抗生素敏感性检测方法,但这些方法耗时且资源消耗大,因此在临床环境中通常不会进行。在此,我们介绍一种基于机器学习的预测建模方法,该方法使用常规可得且易于获取的数据,以相对较高的准确率定性预测抗生素的体外抗生物膜活性。本研究使用从已发表文献中手动收集的数据,成功开发了基于逻辑回归、决策树和随机森林算法的三个优化模型。在这些模型中,作为抗生物膜活性重要预测指标的自变量包括最低抑菌浓度、细菌革兰氏类型、生物膜形成方法,以及抗生素的作用机制、分子量和pKa。交叉验证方法表明,优化后的模型中,逻辑回归模型的预测准确率为67%±6.1%,决策树模型为73%±5.8%,随机森林模型为74%±5%。然而,单向方差分析测试显示,这三个模型在预测准确率上的差异无统计学意义,因此可以认为它们具有相当的性能。所提出的建模方法可作为资源消耗大的生物膜检测方法的替代方法,用于快速且恰当地管理与生物膜相关的感染,尤其是在资源有限的临床环境中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验