Suppr超能文献

基于 CT 的影像组学鉴别 2019 冠状病毒病与甲型 H1N1 流感肺炎的可行性:概念验证。

Feasibility of Radiomics to Differentiate Coronavirus Disease 2019 (COVID-19) from H1N1 Influenza Pneumonia on Chest Computed Tomography: A Proof of Concept.

机构信息

Health Information Management, Office of Vice Chancellor for Research, Arak University of Medical Sciences, Arak, Iran.

Internal Medicine Department, Arak University of Medical Sciences, Arak, Iran.

出版信息

Iran J Med Sci. 2021 Nov;46(6):420-427. doi: 10.30476/ijms.2021.88036.1858.

Abstract

BACKGROUND

Chest computed tomography (CT) plays an essential role in diagnosing coronavirus disease 2019 (COVID-19). However, CT findings are often nonspecific among different viral pneumonia conditions. The differentiation between COVID-19 and influenza can be challenging when seasonal influenza concurs with the COVID-19 pandemic. This study was conducted to test the ability of radiomics-artificial intelligence (AI) to perform this task.

METHODS

In this retrospective study, chest CT images from 47 patients with COVID-19 (after February 2020) and 19 patients with H1N1 influenza (before September 2019) pneumonia were collected from three hospitals affiliated with Arak University of Medical Sciences, Arak, Iran. All pulmonary lesions were segmented on CT images. Multiple radiomics features were extracted from the lesions and used to develop support-vector machine (SVM), k-nearest neighbor (k-NN), decision tree, neural network, adaptive boosting (AdaBoost), and random forest.

RESULTS

The patients with COVID-19 and H1N1 influenza were not significantly different in age and sex (P=0.13 and 0.99, respectively). Nonetheless, the average time between initial symptoms/hospitalization and chest CT was shorter in the patients with COVID-19 (P=0.001 and 0.01, respectively). After the implementation of the inclusion and exclusion criteria, 453 pulmonary lesions were included in this study. On the harmonized features, random forest yielded the highest performance (area under the curve=0.97, sensitivity=89%, precision=90%, F1 score=89%, and classification accuracy=89%).

CONCLUSION

In our preliminary study, radiomics feature extraction, conjoined with AI, especially random forest and neural network, appeared to yield very promising results in the differentiation between COVID-19 and H1N1 influenza on chest CT.

摘要

背景

胸部计算机断层扫描(CT)在诊断 2019 年冠状病毒病(COVID-19)方面发挥着重要作用。然而,在不同的病毒性肺炎情况下,CT 表现通常是非特异性的。当季节性流感与 COVID-19 大流行同时发生时,COVID-19 和流感的鉴别可能具有挑战性。本研究旨在测试放射组学-人工智能(AI)执行此任务的能力。

方法

在这项回顾性研究中,从伊朗阿拉克医科大学附属医院的 47 名 COVID-19 患者(2020 年 2 月后)和 19 名 H1N1 流感肺炎患者(2019 年 9 月前)的胸部 CT 图像中收集了数据。在 CT 图像上对所有肺病变进行分割。从病变中提取多个放射组学特征,并用于开发支持向量机(SVM)、k-最近邻(k-NN)、决策树、神经网络、自适应增强(AdaBoost)和随机森林。

结果

COVID-19 和 H1N1 流感患者在年龄和性别上无显著差异(分别为 P=0.13 和 0.99)。然而,COVID-19 患者从初始症状/住院到胸部 CT 的平均时间更短(分别为 P=0.001 和 0.01)。在实施纳入和排除标准后,本研究共纳入 453 个肺部病变。在协调特征上,随机森林表现出最高的性能(曲线下面积=0.97、敏感性=89%、精度=90%、F1 评分=89%和分类准确率=89%)。

结论

在我们的初步研究中,放射组学特征提取与人工智能,特别是随机森林和神经网络相结合,在胸部 CT 上区分 COVID-19 和 H1N1 流感方面似乎取得了非常有前途的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e868/8611216/c211dae986a7/IJMS-46-420-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验