文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 CT 的放射组学结合征象:有助于放射科医生鉴别 COVID-19 和流感肺炎的有价值工具。

CT-based radiomics combined with signs: a valuable tool to help radiologist discriminate COVID-19 and influenza pneumonia.

机构信息

Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China.

Precision Health Institution, PDx, GE Healthcare (China), Beijing, 100176, China.

出版信息

BMC Med Imaging. 2021 Feb 17;21(1):31. doi: 10.1186/s12880-021-00564-w.


DOI:10.1186/s12880-021-00564-w
PMID:33596844
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7887546/
Abstract

BACKGROUND: In this COVID-19 pandemic, the differential diagnosis of viral pneumonia is still challenging. We aimed to assess the classification performance of computed tomography (CT)-based CT signs and radiomics features for discriminating COVID-19 and influenza pneumonia. METHODS: A total of 154 patients with confirmed viral pneumonia (COVID-19: 89 cases, influenza pneumonia: 65 cases) were collected retrospectively in this study. Pneumonia signs and radiomics features were extracted from the initial unenhanced chest CT images to build independent and combined models. The predictive performance of the radiomics model, CT sign model, the combined model was constructed based on the whole dataset and internally invalidated by using 1000-times bootstrap. Diagnostic performance of the models was assessed via receiver operating characteristic (ROC) analysis. RESULTS: The combined models consisted of 4 significant CT signs and 7 selected features and demonstrated better discrimination performance between COVID-19 and influenza pneumonia than the single radiomics model. For the radiomics model, the area under the ROC curve (AUC) was 0.888 (sensitivity, 86.5%; specificity, 78.4%; accuracy, 83.1%), and the AUC was 0.906 (sensitivity, 86.5%; specificity, 81.5%; accuracy, 84.4%) in the CT signs model. After combining CT signs and radiomics features, AUC of the combined model was 0.959 (sensitivity, 89.9%; specificity, 90.7%; accuracy, 90.3%). CONCLUSIONS: CT-based radiomics combined with signs might be a potential method for distinguishing COVID-19 and influenza pneumonia with satisfactory performance.

摘要

背景:在本次 COVID-19 大流行中,病毒性肺炎的鉴别诊断仍然具有挑战性。我们旨在评估基于计算机断层扫描(CT)的 CT 征象和放射组学特征对鉴别 COVID-19 和流感肺炎的分类性能。

方法:本研究回顾性收集了 154 例确诊为病毒性肺炎的患者(COVID-19:89 例,流感肺炎:65 例)。从初始未增强胸部 CT 图像中提取肺炎征象和放射组学特征,以建立独立和联合模型。基于全数据集构建放射组学模型、CT 征象模型和联合模型,并使用 1000 次自举法进行内部验证。使用受试者工作特征(ROC)分析评估模型的诊断性能。

结果:联合模型由 4 个显著的 CT 征象和 7 个选定的特征组成,与单一放射组学模型相比,对 COVID-19 和流感肺炎的鉴别性能更好。对于放射组学模型,ROC 曲线下面积(AUC)为 0.888(敏感性为 86.5%,特异性为 78.4%,准确性为 83.1%),CT 征象模型的 AUC 为 0.906(敏感性为 86.5%,特异性为 81.5%,准确性为 84.4%)。在联合 CT 征象和放射组学特征后,联合模型的 AUC 为 0.959(敏感性为 89.9%,特异性为 90.7%,准确性为 90.3%)。

结论:基于 CT 的放射组学结合征象可能是一种区分 COVID-19 和流感肺炎的有前途的方法,具有令人满意的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/467fbbe0dbb1/12880_2021_564_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/2141f58050ba/12880_2021_564_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/7bf9296bd36d/12880_2021_564_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/2f648fd4273c/12880_2021_564_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/f2b42e3cdd33/12880_2021_564_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/f20b0b7a8060/12880_2021_564_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/ab90d05c92cc/12880_2021_564_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/467fbbe0dbb1/12880_2021_564_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/2141f58050ba/12880_2021_564_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/7bf9296bd36d/12880_2021_564_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/2f648fd4273c/12880_2021_564_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/f2b42e3cdd33/12880_2021_564_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/f20b0b7a8060/12880_2021_564_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/ab90d05c92cc/12880_2021_564_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/467fbbe0dbb1/12880_2021_564_Fig7_HTML.jpg

相似文献

[1]
CT-based radiomics combined with signs: a valuable tool to help radiologist discriminate COVID-19 and influenza pneumonia.

BMC Med Imaging. 2021-2-17

[2]
CT radiomics facilitates more accurate diagnosis of COVID-19 pneumonia: compared with CO-RADS.

J Transl Med. 2021-1-7

[3]
Feasibility of Radiomics to Differentiate Coronavirus Disease 2019 (COVID-19) from H1N1 Influenza Pneumonia on Chest Computed Tomography: A Proof of Concept.

Iran J Med Sci. 2021-11

[4]
Radiomics Is Effective for Distinguishing Coronavirus Disease 2019 Pneumonia From Influenza Virus Pneumonia.

Front Public Health. 2021

[5]
CT Manifestations of Coronavirus Disease (COVID-19) Pneumonia and Influenza Virus Pneumonia: A Comparative Study.

AJR Am J Roentgenol. 2020-7-9

[6]
Screening of COVID-19 based on the extracted radiomics features from chest CT images.

J Xray Sci Technol. 2021

[7]
Combining initial chest CT with clinical variables in differentiating coronavirus disease 2019 (COVID-19) pneumonia from influenza pneumonia.

Sci Rep. 2021-3-19

[8]
Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19.

Theranostics. 2020-6-5

[9]
A rapid screening classifier for diagnosing COVID-19.

Int J Biol Sci. 2021

[10]
The study of automatic machine learning base on radiomics of non-focus area in the first chest CT of different clinical types of COVID-19 pneumonia.

Sci Rep. 2020-11-3

引用本文的文献

[1]
Development and multicentric external validation of a prognostic COVID-19 severity model based on thoracic CT.

BMC Med Inform Decis Mak. 2025-4-1

[2]
F‑FDG PET/CT based radiomics features improve prediction of prognosis: multiple machine learning algorithms and multimodality applications for multiple myeloma.

BMC Med Imaging. 2023-6-27

[3]
Toward the determination of sensitive and reliable whole-lung computed tomography features for robust standard radiomics and delta-radiomics analysis in a nonhuman primate model of coronavirus disease 2019.

J Med Imaging (Bellingham). 2022-11

[4]
Comparison of temporal evolution of computed tomography imaging features in COVID-19 and influenza infections in a multicenter cohort study.

Eur J Radiol Open. 2022

[5]
CT-based radiomic nomogram for predicting the severity of patients with COVID-19.

Eur J Med Res. 2022-1-25

[6]
Radiomics-based machine learning differentiates "ground-glass" opacities due to COVID-19 from acute non-COVID-19 lung disease.

Sci Rep. 2021-8-26

[7]
Artificial intelligence-driven assessment of radiological images for COVID-19.

Comput Biol Med. 2021-9

[8]
[Artificial intelligence in image evaluation and diagnosis].

Monatsschr Kinderheilkd. 2021

[9]
Radiomics Is Effective for Distinguishing Coronavirus Disease 2019 Pneumonia From Influenza Virus Pneumonia.

Front Public Health. 2021

[10]
A novel CT-based radiomics in the distinction of severity of coronavirus disease 2019 (COVID-19) pneumonia.

BMC Infect Dis. 2021-6-25

本文引用的文献

[1]
A nomogramic model based on clinical and laboratory parameters at admission for predicting the survival of COVID-19 patients.

BMC Infect Dis. 2020-11-30

[2]
Nomogram to identify severe coronavirus disease 2019 (COVID-19) based on initial clinical and CT characteristics: a multi-center study.

BMC Med Imaging. 2020-10-2

[3]
A Quantitative and Radiomics approach to monitoring ARDS in COVID-19 patients based on chest CT: a retrospective cohort study.

Int J Med Sci. 2020-7-6

[4]
Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19.

Theranostics. 2020-6-5

[5]
Identification of common and severe COVID-19: the value of CT texture analysis and correlation with clinical characteristics.

Eur Radiol. 2020-7-1

[6]
Comparative Analysis of Early-Stage Clinical Features Between COVID-19 and Influenza A H1N1 Virus Pneumonia.

Front Public Health. 2020

[7]
COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia.

Eur Radiol. 2020-10

[8]
CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients.

Theranostics. 2020-4-27

[9]
Characteristic CT findings distinguishing 2019 novel coronavirus disease (COVID-19) from influenza pneumonia.

Eur Radiol. 2020-4-22

[10]
Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal.

BMJ. 2020-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索