Suppr超能文献

基于 CT 的放射组学结合征象:有助于放射科医生鉴别 COVID-19 和流感肺炎的有价值工具。

CT-based radiomics combined with signs: a valuable tool to help radiologist discriminate COVID-19 and influenza pneumonia.

机构信息

Medical Imaging Department, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China.

Precision Health Institution, PDx, GE Healthcare (China), Beijing, 100176, China.

出版信息

BMC Med Imaging. 2021 Feb 17;21(1):31. doi: 10.1186/s12880-021-00564-w.

Abstract

BACKGROUND

In this COVID-19 pandemic, the differential diagnosis of viral pneumonia is still challenging. We aimed to assess the classification performance of computed tomography (CT)-based CT signs and radiomics features for discriminating COVID-19 and influenza pneumonia.

METHODS

A total of 154 patients with confirmed viral pneumonia (COVID-19: 89 cases, influenza pneumonia: 65 cases) were collected retrospectively in this study. Pneumonia signs and radiomics features were extracted from the initial unenhanced chest CT images to build independent and combined models. The predictive performance of the radiomics model, CT sign model, the combined model was constructed based on the whole dataset and internally invalidated by using 1000-times bootstrap. Diagnostic performance of the models was assessed via receiver operating characteristic (ROC) analysis.

RESULTS

The combined models consisted of 4 significant CT signs and 7 selected features and demonstrated better discrimination performance between COVID-19 and influenza pneumonia than the single radiomics model. For the radiomics model, the area under the ROC curve (AUC) was 0.888 (sensitivity, 86.5%; specificity, 78.4%; accuracy, 83.1%), and the AUC was 0.906 (sensitivity, 86.5%; specificity, 81.5%; accuracy, 84.4%) in the CT signs model. After combining CT signs and radiomics features, AUC of the combined model was 0.959 (sensitivity, 89.9%; specificity, 90.7%; accuracy, 90.3%).

CONCLUSIONS

CT-based radiomics combined with signs might be a potential method for distinguishing COVID-19 and influenza pneumonia with satisfactory performance.

摘要

背景

在本次 COVID-19 大流行中,病毒性肺炎的鉴别诊断仍然具有挑战性。我们旨在评估基于计算机断层扫描(CT)的 CT 征象和放射组学特征对鉴别 COVID-19 和流感肺炎的分类性能。

方法

本研究回顾性收集了 154 例确诊为病毒性肺炎的患者(COVID-19:89 例,流感肺炎:65 例)。从初始未增强胸部 CT 图像中提取肺炎征象和放射组学特征,以建立独立和联合模型。基于全数据集构建放射组学模型、CT 征象模型和联合模型,并使用 1000 次自举法进行内部验证。使用受试者工作特征(ROC)分析评估模型的诊断性能。

结果

联合模型由 4 个显著的 CT 征象和 7 个选定的特征组成,与单一放射组学模型相比,对 COVID-19 和流感肺炎的鉴别性能更好。对于放射组学模型,ROC 曲线下面积(AUC)为 0.888(敏感性为 86.5%,特异性为 78.4%,准确性为 83.1%),CT 征象模型的 AUC 为 0.906(敏感性为 86.5%,特异性为 81.5%,准确性为 84.4%)。在联合 CT 征象和放射组学特征后,联合模型的 AUC 为 0.959(敏感性为 89.9%,特异性为 90.7%,准确性为 90.3%)。

结论

基于 CT 的放射组学结合征象可能是一种区分 COVID-19 和流感肺炎的有前途的方法,具有令人满意的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3795/7887832/2141f58050ba/12880_2021_564_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验