Barthold Jeanne E, Martin Brittany M, Sridhar Shankar Lalitha, Vernerey Franck, Schneider Stephanie Ellyse, Wacquez Alexis, Ferguson Virginia, Calve Sarah, Neu Corey P
Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO.
BioFrontiers Institute, University of Colorado Boulder, Boulder, CO.
Adv Funct Mater. 2021 Aug 26;31(35). doi: 10.1002/adfm.202103355. Epub 2021 Jun 23.
Cells embedded in the extracellular matrix of tissues play a critical role in maintaining homeostasis while promoting integration and regeneration following damage or disease. Emerging engineered biomaterials utilize decellularized extracellular matrix as a tissue-specific support structure; however, many dense, structured biomaterials unfortunately demonstrate limited formability, fail to promote cell migration, and result in limited tissue repair. Here, we developed a reinforced composite material of densely packed acellular extracellular matrix microparticles in a hydrogel, termed , that can be molded and crosslinked to mimic native tissue architecture. We utilized hyaluronic acid-based hydrogels, amorphously packed with acellular articular cartilage tissue particulated to ~125-250 microns in diameter and defined a percolation threshold of 0.57 (v/v) beyond which the compressive modulus exceeded 300kPa. Remarkably, primary chondrocytes recellularized particles within 48 hours, a process driven by chemotaxis, exhibited distributed cellularity in large engineered composites, and expressed genes consistent with native cartilage repair. We additionally demonstrated broad utility of tissue clays through recellularization and persistence of muscle, skin, and cartilage composites in a subcutaneous mouse model. Our findings suggest optimal strategies and material architectures to balance concurrent demands for large-scale mechanical properties while also supporting recellularization and integration of dense musculoskeletal and connective tissues.
We present a new design framework for regenerative articular cartilage scaffolds using acellular extracellular matrix particles, packed beyond a percolation threshold, and crosslinked within chondroinductive hydrogels. Our results suggest that the architecture and the packing, rather than altering the individual components, creates a composite material that can balance mechanics, porosity to enable migration, and tissue specific biochemical interactions with cells. Moreover, we provide a technique that we show is applicable to other tissue types.
嵌入组织细胞外基质中的细胞在维持体内平衡方面发挥着关键作用,同时促进损伤或疾病后的整合与再生。新兴的工程生物材料利用脱细胞细胞外基质作为组织特异性支持结构;然而,许多致密、结构化的生物材料不幸地表现出有限的可成型性,无法促进细胞迁移,并导致有限的组织修复。在这里,我们开发了一种增强复合材料,它由水凝胶中紧密堆积的无细胞细胞外基质微粒组成,称为 ,可以成型和交联以模拟天然组织结构。我们使用了基于透明质酸的水凝胶,其中无定形地填充有直径约为125 - 250微米的无细胞关节软骨组织颗粒,并确定了渗滤阈值为0.57(体积/体积),超过该阈值压缩模量超过300kPa。值得注意的是,原代软骨细胞在48小时内重新填充颗粒,这一过程由趋化作用驱动,在大型工程复合材料中表现出分布均匀的细胞密度,并表达与天然软骨修复一致的基因。我们还通过在皮下小鼠模型中重新填充肌肉、皮肤和软骨复合材料并使其持久存在,证明了组织黏土的广泛用途。我们的研究结果提出了最佳策略和材料架构,以平衡对大规模机械性能的同时需求,同时也支持致密肌肉骨骼和结缔组织的重新填充和整合。
我们提出了一种用于再生关节软骨支架的新设计框架,该框架使用超过渗滤阈值填充并在软骨诱导水凝胶中交联的无细胞细胞外基质颗粒。我们的结果表明,结构和填充方式,而非改变单个组件,创造了一种能够平衡力学性能、孔隙率以实现迁移以及与细胞的组织特异性生化相互作用的复合材料。此外,我们提供了一种我们证明适用于其他组织类型的技术。