Hamedani Ali G, Blank Leah, Thibault Dylan P, Willis Allison W
Department of Neurology and Translational Center of Excellence for Neuroepidemiology and Neurology Outcomes Research (AGH, DPT), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Departments of Neurology and Population Health Science and Policy (LB), Icahn School of Medicine at Mount Sinai, New York; and Departments of Neurology and of Biostatics and Epidemiology and Translational Center of Excellence for Neuroepidemiology and Neurology Outcomes Research (AWW), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
Neurol Clin Pract. 2021 Oct;11(5):e612-e619. doi: 10.1212/CPJ.0000000000001046.
To determine the effect of () to () coding transition on the point prevalence and longitudinal trends of 16 neurologic diagnoses.
We used 2014-2017 data from the National Inpatient Sample to identify hospitalizations with one of 16 common neurologic diagnoses. We used published codes to identify hospitalizations from January 1, 2014, to September 30, 2015, and used the Agency for Healthcare Research and Quality's MapIt tool to convert them to equivalent codes for October 1, 2015-December 31, 2017. We compared the prevalence of each diagnosis before vs after the ICD coding transition using logistic regression and used interrupted time series regression to model the longitudinal change in disease prevalence across time.
The average monthly prevalence of subarachnoid hemorrhage was stable before the coding transition (average monthly increase of 4.32 admissions, 99.7% confidence interval [CI]: -8.38 to 17.01) but increased after the coding transition (average monthly increase of 24.32 admissions, 99.7% CI: 15.71-32.93). Otherwise, there were no significant differences in the longitudinal rate of change in disease prevalence over time between and . Six of 16 neurologic diagnoses (37.5%) experienced significant changes in cross-sectional prevalence during the coding transition, most notably for status epilepticus (odds ratio 0.30, 99.7% CI: 0.26-0.34).
The transition from to coding affects prevalence estimates for status epilepticus and other neurologic disorders, a potential source of bias for future longitudinal neurologic studies. Studies should limit to 1 coding system or use interrupted time series models to adjust for changes in coding patterns until new neurology-specific ICD-9 to ICD-10 conversion maps can be developed.
确定()至()编码转换对16种神经系统诊断的时点患病率及纵向趋势的影响。
我们使用了来自国家住院样本的2014 - 2017年数据,以识别患有16种常见神经系统诊断之一的住院病例。我们使用已公布的()编码来识别2014年1月1日至2015年9月30日期间的住院病例,并使用医疗保健研究与质量局的MapIt工具将其转换为2015年10月1日至2017年12月31日等效的()编码。我们使用逻辑回归比较了ICD编码转换前后每种诊断的患病率,并使用中断时间序列回归来模拟疾病患病率随时间的纵向变化。
蛛网膜下腔出血的平均每月患病率在编码转换前稳定(平均每月增加4.32例入院,99.7%置信区间[CI]: - 8.38至17.01),但在编码转换后增加(平均每月增加24.32例入院,99.7% CI:15.71 - 32.93)。否则,()和()之间疾病患病率随时间的纵向变化率没有显著差异。16种神经系统诊断中有6种(37.5%)在编码转换期间横断面患病率发生了显著变化,最明显的是癫痫持续状态(优势比0.30,99.7% CI:0.26 - 0.34)。
从()到()编码的转换影响癫痫持续状态和其他神经系统疾病的患病率估计,这是未来纵向神经系统研究潜在的偏差来源。在能够开发新的针对神经病学的ICD - 9到ICD - 10转换映射之前,研究应限于单一编码系统或使用中断时间序列模型来调整编码模式的变化。