Suppr超能文献

从[具体编码]到[具体编码]的编码转换对神经病学患病率趋势的影响 。 (注:原文中“to”前后的具体编码缺失,翻译时保留原文格式以便理解,实际翻译需补充完整准确的编码内容)

Impact of to Coding Transition on Prevalence Trends in Neurology.

作者信息

Hamedani Ali G, Blank Leah, Thibault Dylan P, Willis Allison W

机构信息

Department of Neurology and Translational Center of Excellence for Neuroepidemiology and Neurology Outcomes Research (AGH, DPT), Perelman School of Medicine, University of Pennsylvania, Philadelphia; Departments of Neurology and Population Health Science and Policy (LB), Icahn School of Medicine at Mount Sinai, New York; and Departments of Neurology and of Biostatics and Epidemiology and Translational Center of Excellence for Neuroepidemiology and Neurology Outcomes Research (AWW), Perelman School of Medicine, University of Pennsylvania, Philadelphia.

出版信息

Neurol Clin Pract. 2021 Oct;11(5):e612-e619. doi: 10.1212/CPJ.0000000000001046.

Abstract

OBJECTIVE

To determine the effect of () to () coding transition on the point prevalence and longitudinal trends of 16 neurologic diagnoses.

METHODS

We used 2014-2017 data from the National Inpatient Sample to identify hospitalizations with one of 16 common neurologic diagnoses. We used published codes to identify hospitalizations from January 1, 2014, to September 30, 2015, and used the Agency for Healthcare Research and Quality's MapIt tool to convert them to equivalent codes for October 1, 2015-December 31, 2017. We compared the prevalence of each diagnosis before vs after the ICD coding transition using logistic regression and used interrupted time series regression to model the longitudinal change in disease prevalence across time.

RESULTS

The average monthly prevalence of subarachnoid hemorrhage was stable before the coding transition (average monthly increase of 4.32 admissions, 99.7% confidence interval [CI]: -8.38 to 17.01) but increased after the coding transition (average monthly increase of 24.32 admissions, 99.7% CI: 15.71-32.93). Otherwise, there were no significant differences in the longitudinal rate of change in disease prevalence over time between and . Six of 16 neurologic diagnoses (37.5%) experienced significant changes in cross-sectional prevalence during the coding transition, most notably for status epilepticus (odds ratio 0.30, 99.7% CI: 0.26-0.34).

CONCLUSIONS

The transition from to coding affects prevalence estimates for status epilepticus and other neurologic disorders, a potential source of bias for future longitudinal neurologic studies. Studies should limit to 1 coding system or use interrupted time series models to adjust for changes in coding patterns until new neurology-specific ICD-9 to ICD-10 conversion maps can be developed.

摘要

目的

确定()至()编码转换对16种神经系统诊断的时点患病率及纵向趋势的影响。

方法

我们使用了来自国家住院样本的2014 - 2017年数据,以识别患有16种常见神经系统诊断之一的住院病例。我们使用已公布的()编码来识别2014年1月1日至2015年9月30日期间的住院病例,并使用医疗保健研究与质量局的MapIt工具将其转换为2015年10月1日至2017年12月31日等效的()编码。我们使用逻辑回归比较了ICD编码转换前后每种诊断的患病率,并使用中断时间序列回归来模拟疾病患病率随时间的纵向变化。

结果

蛛网膜下腔出血的平均每月患病率在编码转换前稳定(平均每月增加4.32例入院,99.7%置信区间[CI]: - 8.38至17.01),但在编码转换后增加(平均每月增加24.32例入院,99.7% CI:15.71 - 32.93)。否则,()和()之间疾病患病率随时间的纵向变化率没有显著差异。16种神经系统诊断中有6种(37.5%)在编码转换期间横断面患病率发生了显著变化,最明显的是癫痫持续状态(优势比0.30,99.7% CI:0.26 - 0.34)。

结论

从()到()编码的转换影响癫痫持续状态和其他神经系统疾病的患病率估计,这是未来纵向神经系统研究潜在的偏差来源。在能够开发新的针对神经病学的ICD - 9到ICD - 10转换映射之前,研究应限于单一编码系统或使用中断时间序列模型来调整编码模式的变化。

相似文献

引用本文的文献

7
Changes in multimorbidity among hospitalized adults in the US.美国住院成年人中多重疾病的变化。
J Multimorb Comorb. 2024 Sep 3;14:26335565241283436. doi: 10.1177/26335565241283436. eCollection 2024 Jan-Dec.
9
Hospital variation of outcomes in status epilepticus.癫痫持续状态的医院结局差异。
Epilepsia. 2024 May;65(5):1415-1427. doi: 10.1111/epi.17927. Epub 2024 Feb 26.

本文引用的文献

7
Pregnancy Outcomes in Women With Multiple Sclerosis.多发性硬化症女性的妊娠结局。
Am J Epidemiol. 2019 Jan 1;188(1):57-66. doi: 10.1093/aje/kwy197.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验