Suppr超能文献

一种使用质子转移反应飞行时间质谱法鉴定人呼出气体中新冠病毒生物标志物的方法。

A method for the identification of COVID-19 biomarkers in human breath using Proton Transfer Reaction Time-of-Flight Mass Spectrometry.

作者信息

Liangou Aikaterini, Tasoglou Antonios, Huber Heinz J, Wistrom Christopher, Brody Kevin, Menon Prahlad G, Bebekoski Thomas, Menschel Kevin, Davidson-Fiedler Marlise, DeMarco Karl, Salphale Harshad, Wistrom Jonathan, Wistrom Skyler, Lee Richard J

机构信息

RJ Lee Group Inc., Monroeville, PA, USA.

Edelweiss Technology Solutions LLC, Novelty, OH, USA.

出版信息

EClinicalMedicine. 2021 Dec;42:101207. doi: 10.1016/j.eclinm.2021.101207. Epub 2021 Nov 20.

Abstract

BACKGROUND

COVID-19 has caused a worldwide pandemic, making the early detection of the virus crucial. We present an approach for the determination of COVID-19 infection based on breath analysis.

METHODS

A high sensitivity mass spectrometer was combined with artificial intelligence and used to develop a method for the identification of COVID-19 in human breath within seconds. A set of 1137 positive and negative subjects from different age groups, collected in two periods from two hospitals in the USA, from 26 August, 2020 until 15 September, 2020 and from 11 September, 2020 until 11 November, 2020, was used for the method development. The subjects exhaled in a Tedlar bag, and the exhaled breath samples were subsequently analyzed using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). The produced mass spectra were introduced to a series of machine learning models. 70% of the data was used for these sub-models' training and 30% was used for testing.

FINDINGS

A set of 340 samples, 95 positives and 245 negatives, was used for the testing. The combined models successfully predicted 77 out of the 95 samples as positives and 199 out of the 245 samples as negatives. The overall accuracy of the model was 81.2%. Since over 50% of the total positive samples belonged to the age group of over 55 years old, the performance of the model in this category was also separately evaluated on 339 subjects (170 negative and 169 positive). The model correctly identified 166 out of the 170 negatives and 164 out of the 169 positives. The model accuracy in this case was 97.3%.

INTERPRETATION

The results showed that this method for the identification of COVID-19 infection is a promising tool, which can give fast and accurate results.

摘要

背景

新型冠状病毒肺炎已引发全球大流行,因此早期检测该病毒至关重要。我们提出了一种基于呼吸分析来确定新型冠状病毒肺炎感染情况的方法。

方法

将高灵敏度质谱仪与人工智能相结合,用于开发一种能在数秒内识别出人类呼出气体中新型冠状病毒肺炎的方法。一组来自不同年龄组的1137名阳性和阴性受试者,于2020年8月26日至2020年9月15日以及2020年9月11日至2020年11月11日期间,从美国两家医院分两个阶段收集,用于该方法的开发。受试者向泰德拉袋中呼气,随后使用质子转移反应飞行时间质谱仪(PTR-ToF-MS)对呼出的呼吸样本进行分析。将生成的质谱图引入一系列机器学习模型。70%的数据用于这些子模型的训练,30%用于测试。

研究结果

一组340个样本,其中95个阳性和245个阴性,用于测试。组合模型成功将95个样本中的77个预测为阳性,245个样本中的199个预测为阴性。该模型的总体准确率为81.2%。由于超过50%的阳性样本总数属于55岁以上年龄组,因此还对339名受试者(170名阴性和169名阳性)单独评估了该模型在这一类别中的表现。该模型正确识别出170个阴性样本中的166个和169个阳性样本中的164个。在这种情况下,模型准确率为97.3%。

解读

结果表明,这种识别新型冠状病毒肺炎感染的方法是一种很有前景的工具,能够给出快速且准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f4/8608874/58debd8ce266/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验