Sathish Shivani, Shen Amy Q
Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
JACS Au. 2021 Sep 22;1(11):1815-1833. doi: 10.1021/jacsau.1c00318. eCollection 2021 Nov 22.
Recent advances in nano/microfluidics have led to the miniaturization of surface-based chemical and biochemical sensors, with applications ranging from environmental monitoring to disease diagnostics. These systems rely on the detection of analytes flowing in a liquid sample, by exploiting their innate nature to react with specific receptors immobilized on the microchannel walls. The efficiency of these systems is defined by the cumulative effect of analyte detection speed, sensitivity, and specificity. In this perspective, we provide a fresh outlook on the use of important parameters obtained from well-characterized analytical models, by connecting the mass transport and reaction limits with the experimentally attainable limits of analyte detection efficiency. Specifically, we breakdown when and how the operational (e.g., flow rates, channel geometries, mode of detection, etc.) and molecular (e.g., receptor affinity and functionality) variables can be tailored to enhance the analyte detection time, analytical specificity, and sensitivity of the system (i.e., limit of detection). Finally, we present a simple yet cohesive blueprint for the development of high-efficiency surface-based microfluidic sensors for rapid, sensitive, and specific detection of chemical and biochemical analytes, pertinent to a variety of applications.
纳米/微流控技术的最新进展已实现了基于表面的化学和生化传感器的小型化,其应用范围涵盖从环境监测到疾病诊断等多个领域。这些系统依靠检测液体样品中流动的分析物来工作,利用分析物与固定在微通道壁上的特定受体发生反应的固有特性。这些系统的效率由分析物检测速度、灵敏度和特异性的累积效应来定义。从这个角度出发,我们通过将传质和反应极限与分析物检测效率的实验可达到极限联系起来,对从特征明确的分析模型中获得的重要参数的使用提供了全新的视角。具体而言,我们剖析了何时以及如何调整操作变量(例如流速、通道几何形状、检测模式等)和分子变量(例如受体亲和力和功能),以缩短分析物检测时间、提高分析特异性和系统灵敏度(即检测限)。最后,我们提出了一个简单而连贯的蓝图,用于开发高效的基于表面的微流控传感器,以实现对化学和生化分析物的快速、灵敏和特异性检测,适用于各种应用。