Suppr超能文献

深度学习算法在急诊 CT 扫描中检测颅内出血的应用。

Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies.

机构信息

Center for Emergency Training, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany.

Center for Clinical Research, BG Klinikum Unfallkrankenhaus Berlin, Berlin, Germany.

出版信息

PLoS One. 2021 Nov 29;16(11):e0260560. doi: 10.1371/journal.pone.0260560. eCollection 2021.

Abstract

BACKGROUND

Highly accurate detection of intracranial hemorrhages (ICH) on head computed tomography (HCT) scans can prove challenging at high-volume centers. This study aimed to determine the number of additional ICHs detected by an artificial intelligence (AI) algorithm and to evaluate reasons for erroneous results at a level I trauma center with teleradiology services.

METHODS

In a retrospective multi-center cohort study, consecutive emergency non-contrast HCT scans were analyzed by a commercially available ICH detection software (AIDOC, Tel Aviv, Israel). Discrepancies between AI analysis and initial radiology report (RR) were reviewed by a blinded neuroradiologist to determine the number of additional ICHs detected and evaluate reasons leading to errors.

RESULTS

4946 HCT (05/2020-09/2020) from 18 hospitals were included in the analysis. 205 reports (4.1%) were classified as hemorrhages by both radiology report and AI. Out of a total of 162 (3.3%) discrepant reports, 62 were confirmed as hemorrhages by the reference neuroradiologist. 33 ICHs were identified exclusively via RRs. The AI algorithm detected an additional 29 instances of ICH, missed 12.4% of ICH and overcalled 1.9%; RRs missed 10.9% of ICHs and overcalled 0.2%. Many of the ICHs missed by the AI algorithm were located in the subarachnoid space (42.4%) and under the calvaria (48.5%). 85% of ICHs missed by RRs occurred outside of regular working-hours. Calcifications (39.3%), beam-hardening artifacts (18%), tumors (15.7%), and blood vessels (7.9%) were the most common reasons for AI overcalls. ICH size, image quality, and primary examiner experience were not found to be significantly associated with likelihood of incorrect AI results.

CONCLUSION

Complementing human expertise with AI resulted in a 12.2% increase in ICH detection. The AI algorithm overcalled 1.9% HCT.

TRIAL REGISTRATION

German Clinical Trials Register (DRKS-ID: DRKS00023593).

摘要

背景

在高容量中心,对头 CT(HCT)扫描进行颅内出血(ICH)的高度准确检测可能具有挑战性。本研究旨在确定人工智能(AI)算法检测到的额外 ICH 数量,并评估一级创伤中心远程放射服务中错误结果的原因。

方法

在回顾性多中心队列研究中,对商业上可用的 ICH 检测软件(以色列特拉维夫的 AIDOC)分析连续的紧急非对比 HCT 扫描。通过盲法神经放射科医师对 AI 分析与初始放射学报告(RR)之间的差异进行审查,以确定检测到的额外 ICH 数量,并评估导致错误的原因。

结果

纳入分析的 18 家医院共 4946 例 HCT(2020 年 5 月至 2020 年 9 月)。205 份报告(4.1%)被 RR 和 AI 均分类为出血。在总共 162 份(3.3%)有差异的报告中,62 份被参考神经放射科医师确认为出血。33 例 ICH 仅通过 RR 识别。AI 算法检测到另外 29 例 ICH,漏诊了 12.4%的 ICH 并过度诊断了 1.9%;RR 漏诊了 10.9%的 ICH 并过度诊断了 0.2%。AI 算法漏诊的许多 ICH 位于蛛网膜下腔(42.4%)和颅骨下(48.5%)。RR 漏诊的 85%ICH 发生在正常工作时间之外。钙化(39.3%)、束硬化伪影(18%)、肿瘤(15.7%)和血管(7.9%)是 AI 过度诊断的最常见原因。ICH 大小、图像质量和主要检查者经验与不正确的 AI 结果的可能性无显著相关性。

结论

用 AI 补充人类专业知识可使 ICH 检测增加 12.2%。AI 算法过度诊断了 1.9%的 HCT。

试验注册

德国临床试验注册处(DRKS-ID:DRKS00023593)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4591/8629230/26b2486e4504/pone.0260560.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验