Suppr超能文献

人工智能工具作为潜在放射学同行评审者的效用——检测未报告的颅内出血。

Utility of Artificial Intelligence Tool as a Prospective Radiology Peer Reviewer - Detection of Unreported Intracranial Hemorrhage.

机构信息

Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT 06520.

Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 330 Cedar St. Tompkins East TE-2, New Haven, CT 06520.

出版信息

Acad Radiol. 2021 Jan;28(1):85-93. doi: 10.1016/j.acra.2020.01.035. Epub 2020 Feb 24.

Abstract

RATIONALE AND OBJECTIVES

Misdiagnosis of intracranial hemorrhage (ICH) can adversely impact patient outcomes. The increasing workload on the radiologists may increase the chance of error and compromise the quality of care provided by the radiologists.

MATERIALS AND METHODS

We used an FDA approved artificial intelligence (AI) solution based on a convolutional neural network to assess the prevalence of ICH in scans, which were reported as negative for ICH. We retrospectively applied the AI solution to all consecutive noncontrast computed tomography (CT) head scans performed at eight imaging sites affiliated to our institution.

RESULTS

In the 6565 noncontrast CT head scans, which met the inclusion criteria, 5585 scans were reported to have no ICH ("negative-by-report" cases). We applied AI solution to these "negative-by-report" cases. AI solution suggested there were ICH in 28 of these scans ("negative-by-report" and "positive-by-AI solution"). After consensus review by three neuroradiologists, 16 of these scans were found to have ICH, which was not reported (missed diagnosis by radiologists), with a false-negative rate of radiologists for ICH detection at 1.6%. Most commonly missed ICH was overlying the cerebral convexity and in the parafalcine regions.

CONCLUSION

Our study demonstrates that an AI solution can help radiologists to diagnose ICH and thus decrease the error rate. AI solution can serve as a prospective peer review tool for non-contrast head CT scans to identify ICH and thus minimize false negatives.

摘要

背景与目的

颅内出血(ICH)的误诊可能会对患者的预后产生不利影响。放射科医生的工作量不断增加,可能会增加出错的机会,从而影响放射科医生提供的护理质量。

材料与方法

我们使用了一种获得美国食品和药物管理局(FDA)批准的基于卷积神经网络的人工智能(AI)解决方案,来评估放射科医生报告为阴性的扫描中 ICH 的发生率。我们回顾性地将 AI 解决方案应用于我们机构附属的八个影像学站点进行的所有连续非对比 CT(NCCT)头部扫描。

结果

在符合纳入标准的 6565 例 NCCT 头部扫描中,有 5585 例报告无 ICH(“报告阴性”病例)。我们将 AI 解决方案应用于这些“报告阴性”病例。AI 解决方案提示在这些扫描中有 28 例存在 ICH(“报告阴性但 AI 解决方案阳性”)。经过三位神经放射科医生的共识审查,其中 16 例被发现有 ICH,但未被报告(放射科医生漏诊),放射科医生对 ICH 的漏诊率为 1.6%。最常见的漏诊ICH 位于大脑凸面和眶顶区域。

结论

我们的研究表明,AI 解决方案可以帮助放射科医生诊断 ICH,从而降低错误率。AI 解决方案可以作为 NCCT 头部扫描的前瞻性同行评审工具,以识别 ICH,从而最大限度地减少漏诊。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验