Suppr超能文献

深度学习在全国远程放射学计划中检测颅内出血及其对解释时间的影响。

Deep Learning to Detect Intracranial Hemorrhage in a National Teleradiology Program and the Impact on Interpretation Time.

机构信息

From the VA National Teleradiology Program, 795 Willow Rd, Bldg 3342, Menlo Park, CA 94025 (A.J.D.G., R.S.); VA Palo Alto Health Care System, Palo Alto, Calif (T.F.O.); Department of Radiology, Stanford University School of Medicine, Stanford, Calif (T.F.O.); and VA Health Solutions, Patient Care Services, Washington, DC (T.S.).

出版信息

Radiol Artif Intell. 2024 Sep;6(5):e240067. doi: 10.1148/ryai.240067.

Abstract

The diagnostic performance of an artificial intelligence (AI) clinical decision support solution for acute intracranial hemorrhage (ICH) detection was assessed in a large teleradiology practice. The impact on radiologist read times and system efficiency was also quantified. A total of 61 704 consecutive noncontrast head CT examinations were retrospectively evaluated. System performance was calculated along with mean and median read times for CT studies obtained before (baseline, pre-AI period; August 2021 to May 2022) and after (post-AI period; January 2023 to February 2024) AI implementation. The AI solution had a sensitivity of 75.6%, specificity of 92.1%, accuracy of 91.7%, prevalence of 2.70%, and positive predictive value of 21.1%. Of the 56 745 post-AI CT scans with no bleed identified by a radiologist, examinations falsely flagged as suspected ICH by the AI solution ( = 4464) took an average of 9 minutes 40 seconds (median, 8 minutes 7 seconds) to interpret as compared with 8 minutes 25 seconds (median, 6 minutes 48 seconds) for unremarkable CT scans before AI ( = 49 007) ( < .001) and 8 minutes 38 seconds (median, 6 minutes 53 seconds) after AI when ICH was not suspected by the AI solution ( = 52 281) ( < .001). CT scans with no bleed identified by the AI but reported as positive for ICH by the radiologist ( = 384) took an average of 14 minutes 23 seconds (median, 13 minutes 35 seconds) to interpret as compared with 13 minutes 34 seconds (median, 12 minutes 30 seconds) for CT scans correctly reported as a bleed by the AI ( = 1192) ( = .04). With lengthened read times for falsely flagged examinations, system inefficiencies may outweigh the potential benefits of using the tool in a high volume, low prevalence environment. Artificial Intelligence, Intracranial Hemorrhage, Read Time, Report Turnaround Time, System Efficiency © RSNA, 2024.

摘要

在一家大型远程放射科实践中,评估了人工智能(AI)临床决策支持解决方案在急性颅内出血(ICH)检测中的诊断性能。还量化了对放射科医生阅读时间和系统效率的影响。回顾性评估了总共 61704 例连续的非对比头部 CT 检查。计算了系统性能以及在 AI 实施之前(基线,AI 前时期;2021 年 8 月至 2022 年 5 月)和之后(AI 后时期;2023 年 1 月至 2024 年 2 月)获得的 CT 研究的平均和中位数阅读时间。AI 解决方案的敏感性为 75.6%,特异性为 92.1%,准确性为 91.7%,患病率为 2.70%,阳性预测值为 21.1%。在 AI 后 56745 例没有放射科医生发现出血的 CT 扫描中,AI 解决方案错误地标记为疑似 ICH 的检查(=4464)的解释时间平均为 9 分 40 秒(中位数,8 分 7 秒),与 AI 前无异常 CT 扫描的 8 分 25 秒(中位数,6 分 48 秒)相比(=49007)(<0.001),并且在 AI 不怀疑 ICH 时,8 分 38 秒(中位数,6 分 53 秒)(=52281)(<0.001)。AI 识别为无出血但放射科医生报告为 ICH 阳性的 CT 扫描(=384)的解释时间平均为 14 分 23 秒(中位数,13 分 35 秒),与 AI 正确报告为出血的 CT 扫描的 13 分 34 秒(中位数,12 分 30 秒)相比(=1192)(=0.04)。由于假阳性检查的阅读时间延长,系统效率可能超过在高容量、低患病率环境中使用该工具的潜在好处。人工智能,颅内出血,阅读时间,报告周转时间,系统效率 © RSNA,2024 年。

相似文献

2
Prospective Evaluation of Artificial Intelligence Triage of Intracranial Hemorrhage on Noncontrast Head CT Examinations.
AJR Am J Roentgenol. 2024 Nov;223(5):e2431639. doi: 10.2214/AJR.24.31639. Epub 2024 Sep 4.
3
Impact of Artificial Intelligence Assistance on Chest CT Interpretation Times: A Prospective Randomized Study.
AJR Am J Roentgenol. 2022 Nov;219(5):743-751. doi: 10.2214/AJR.22.27598. Epub 2022 Jun 15.
5
Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans.
Radiol Med. 2024 Oct;129(10):1499-1506. doi: 10.1007/s11547-024-01867-y. Epub 2024 Aug 9.
6
Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies.
PLoS One. 2021 Nov 29;16(11):e0260560. doi: 10.1371/journal.pone.0260560. eCollection 2021.
7
Assessment of an Artificial Intelligence Algorithm for Detection of Intracranial Hemorrhage.
World Neurosurg. 2021 Jun;150:e209-e217. doi: 10.1016/j.wneu.2021.02.134. Epub 2021 Mar 5.
8
Sociodemographic biases in a commercial AI model for intracranial hemorrhage detection.
Emerg Radiol. 2024 Oct;31(5):713-723. doi: 10.1007/s10140-024-02270-w. Epub 2024 Jul 22.

引用本文的文献

3
Artificial intelligence for diagnostics in radiology practice: a rapid systematic scoping review.
EClinicalMedicine. 2025 May 12;83:103228. doi: 10.1016/j.eclinm.2025.103228. eCollection 2025 May.
4
Radiology AI and sustainability paradox: environmental, economic, and social dimensions.
Insights Imaging. 2025 Apr 17;16(1):88. doi: 10.1186/s13244-025-01962-2.
6
The Future of Artificial Intelligence in Clinical Radiology: Savior or False Hope?
AJNR Am J Neuroradiol. 2024 Dec 9;45(12):1838-1844. doi: 10.3174/ajnr.A8550.
7
Achieving More with Less: Combining Strong and Weak Labels for Intracranial Hemorrhage Detection.
Radiol Artif Intell. 2024 Nov;6(6):e240670. doi: 10.1148/ryai.240670.

本文引用的文献

3
Utilization of Artificial Intelligence-based Intracranial Hemorrhage Detection on Emergent Noncontrast CT Images in Clinical Workflow.
Radiol Artif Intell. 2022 Feb 9;4(2):e210168. doi: 10.1148/ryai.210168. eCollection 2022 Mar.
4
Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies.
PLoS One. 2021 Nov 29;16(11):e0260560. doi: 10.1371/journal.pone.0260560. eCollection 2021.
5
Validation of a Deep Learning Tool in the Detection of Intracranial Hemorrhage and Large Vessel Occlusion.
Front Neurol. 2021 Apr 29;12:656112. doi: 10.3389/fneur.2021.656112. eCollection 2021.
6
Emergency Computed Tomography: How Misinterpretations Vary According to the Periods of the Nightshift?
J Comput Assist Tomogr. 2021;45(2):248-252. doi: 10.1097/RCT.0000000000001128.
7
Automated Cerebral Hemorrhage Detection Using RAPID.
AJNR Am J Neuroradiol. 2021 Jan;42(2):273-278. doi: 10.3174/ajnr.A6926. Epub 2020 Dec 24.
8
Machine Learning and Improved Quality Metrics in Acute Intracranial Hemorrhage by Noncontrast Computed Tomography.
Curr Probl Diagn Radiol. 2022 Jul-Aug;51(4):556-561. doi: 10.1067/j.cpradiol.2020.10.007. Epub 2020 Nov 15.
9
Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage.
Neuroradiology. 2020 Mar;62(3):335-340. doi: 10.1007/s00234-019-02330-w. Epub 2019 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验