The Inner Ear & Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
Inner Ear Laboratory, Department of Otolaryngology, Medical University of Innsbruck, Austria.
Hear Res. 2022 Feb;414:108391. doi: 10.1016/j.heares.2021.108391. Epub 2021 Nov 14.
Auditory neurons connect the sensory hair cells from the inner ear to the brainstem. These bipolar neurons are relevant targets for pharmacological intervention aiming at protecting or improving the hearing function in various forms of sensorineural hearing loss. In the research laboratory, neurotrophic compounds are commonly used to improve survival and to promote regeneration of auditory neurons. One important roadblock delaying eventual clinical applications of these strategies in humans is the lack of powerful in vitro models allowing high throughput screening of otoprotective and regenerative compounds. The recently discovered auditory neuroprogenitors (ANPGs) derived from the A/J mouse with an unprecedented capacity to self-renew and to provide mature auditory neurons offer the possibility to overcome this bottleneck. In the present study, we further characterized the new phoenix ANPGs model and compared it to the current gold-standard spiral ganglion organotypic explant (SGE) model to assay neurite outgrowth, neurite length and glutamate-induced Ca response in response to neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF) treatment. Whereas both, SGEs and phoenix ANPGs exhibited a robust and sensitive response to neurotrophins, the phoenix ANPGs offer a considerable range of advantages including high throughput suitability, lower experimental variability, single cell resolution and an important reduction of animal numbers. The phoenix ANPGs in vitro model therefore provides a robust high-throughput platform to screen for otoprotective and regenerative neurotrophic compounds in line with 3R principles and is of interest for the field of auditory neuroscience.
听觉神经元将内耳的感觉毛细胞连接到脑干。这些双极神经元是药理学干预的相关靶点,旨在保护或改善各种形式的感觉神经性听力损失的听力功能。在研究实验室中,神经营养化合物通常用于提高存活并促进听觉神经元的再生。这些策略最终在人类中的临床应用的一个重要障碍是缺乏强大的体外模型,无法高通量筛选耳保护和再生化合物。最近从具有前所未有的自我更新能力并提供成熟听觉神经元的 A/J 小鼠中发现的听觉神经前体细胞 (ANPG) 提供了克服这一瓶颈的可能性。在本研究中,我们进一步对新的凤凰 ANPG 模型进行了表征,并将其与当前的金标准螺旋神经节器官型外植体 (SGE) 模型进行了比较,以检测神经突起生长、神经突长度以及谷氨酸诱导的 Ca 反应对神经营养因子-3 (NT-3) 和脑源性神经营养因子 (BDNF) 处理的反应。尽管 SGE 和凤凰 ANPG 都对神经营养因子表现出强大而敏感的反应,但凤凰 ANPG 具有许多优势,包括高通量适用性、较低的实验变异性、单细胞分辨率以及动物数量的重要减少。因此,凤凰 ANPG 体外模型为筛选耳保护和再生神经营养化合物提供了一个强大的高通量平台,符合 3R 原则,是听觉神经科学领域的关注焦点。