Suppr超能文献

综合上皮性输卵管-卵巢癌风险预测模型,纳入遗传和流行病学风险因素。

Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors.

机构信息

Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

出版信息

J Med Genet. 2022 Jul;59(7):632-643. doi: 10.1136/jmedgenet-2021-107904. Epub 2021 Nov 29.

Abstract

BACKGROUND

Epithelial tubo-ovarian cancer (EOC) has high mortality partly due to late diagnosis. Prevention is available but may be associated with adverse effects. A multifactorial risk model based on known genetic and epidemiological risk factors (RFs) for EOC can help identify women at higher risk who could benefit from targeted screening and prevention.

METHODS

We developed a multifactorial EOC risk model for women of European ancestry incorporating the effects of pathogenic variants (PVs) in , , , and , a Polygenic Risk Score (PRS) of arbitrary size, the effects of RFs and explicit family history (FH) using a synthetic model approach. The PRS, PV and RFs were assumed to act multiplicatively.

RESULTS

Based on a currently available PRS for EOC that explains 5% of the EOC polygenic variance, the estimated lifetime risks under the multifactorial model in the general population vary from 0.5% to 4.6% for the first to 99th percentiles of the EOC risk distribution. The corresponding range for women with an affected first-degree relative is 1.9%-10.3%. Based on the combined risk distribution, 33% of PV carriers are expected to have a lifetime EOC risk of less than 10%. RFs provided the widest distribution, followed by the PRS. In an independent partial model validation, absolute and relative 5-year risks were well calibrated in quintiles of predicted risk.

CONCLUSION

This multifactorial risk model can facilitate stratification, in particular among women with FH of cancer and/or moderate-risk and high-risk PVs. The model is available via the CanRisk Tool (www.canrisk.org).

摘要

背景

上皮性输卵管卵巢癌(EOC)死亡率高,部分原因是诊断较晚。目前已有预防措施,但可能会伴随不良反应。基于上皮性输卵管卵巢癌已知的遗传和流行病学风险因素(RFs)的多因素风险模型,可以帮助确定处于高风险的女性,她们可能受益于靶向筛查和预防。

方法

我们为欧洲血统的女性开发了一种上皮性输卵管卵巢癌多因素风险模型,纳入了 、 、 、 和 致病性变异(PVs)的影响、任意大小的多基因风险评分(PRS)、RFs 的影响以及通过合成模型方法明确的家族史(FH)。PRS、PV 和 RFs 被假定为相乘作用。

结果

基于目前可用于上皮性输卵管卵巢癌的 PRS,它解释了上皮性输卵管卵巢癌多基因变异的 5%,在一般人群中,多因素模型下的终生风险在上皮性输卵管卵巢癌风险分布的第 1 到 99 百分位从 0.5%到 4.6%不等。对于有一级亲属受影响的女性,对应的范围为 1.9%-10.3%。基于综合风险分布,预计 33%的 PV 携带者的终生上皮性输卵管卵巢癌风险低于 10%。RFs 提供了最广泛的分布,其次是 PRS。在独立的部分模型验证中,五分位预测风险的绝对和相对 5 年风险校准良好。

结论

这种多因素风险模型可以促进分层,特别是在有癌症家族史和/或中等风险和高风险 PVs 的女性中。该模型可通过 CanRisk 工具(www.canrisk.org)获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8b5/9252860/3cf9c51d7e83/jmedgenet-2021-107904f01.jpg

相似文献

1
Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors.
J Med Genet. 2022 Jul;59(7):632-643. doi: 10.1136/jmedgenet-2021-107904. Epub 2021 Nov 29.
2
Validation of the BOADICEA model for epithelial tubo-ovarian cancer risk prediction in UK Biobank.
Br J Cancer. 2024 Nov;131(9):1473-1479. doi: 10.1038/s41416-024-02851-z. Epub 2024 Sep 18.
3
Enhancing the BOADICEA cancer risk prediction model to incorporate new data on , , updates to tumour pathology and cancer incidence.
J Med Genet. 2022 Dec;59(12):1206-1218. doi: 10.1136/jmedgenet-2022-108471. Epub 2022 Sep 26.
4
Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.
Genet Med. 2020 Oct;22(10):1653-1666. doi: 10.1038/s41436-020-0862-x. Epub 2020 Jul 15.
5
BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors.
Genet Med. 2019 Aug;21(8):1708-1718. doi: 10.1038/s41436-018-0406-9. Epub 2019 Jan 15.
7
Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study.
J Med Genet. 2018 Aug;55(8):546-554. doi: 10.1136/jmedgenet-2018-105313. Epub 2018 May 5.
9
Cost-Effectiveness of Gene-Specific Prevention Strategies for Ovarian and Breast Cancer.
JAMA Netw Open. 2024 Feb 5;7(2):e2355324. doi: 10.1001/jamanetworkopen.2023.55324.

引用本文的文献

1
Defining Lifetime Risk Thresholds for Breast Cancer Surgical Prevention.
JAMA Oncol. 2025 Jul 24. doi: 10.1001/jamaoncol.2025.2203.
4
TEX10: A Novel Drug Target and Potential Therapeutic Direction for Sleep Apnea Syndrome.
Nat Sci Sleep. 2025 May 1;17:731-746. doi: 10.2147/NSS.S499895. eCollection 2025.
5
Transcriptome analysis of ovarian cancer uncovers association between tumor-related inflammation/immunity and patient outcome.
Front Pharmacol. 2025 Feb 6;16:1500251. doi: 10.3389/fphar.2025.1500251. eCollection 2025.
7
Validation of the BOADICEA model for epithelial tubo-ovarian cancer risk prediction in UK Biobank.
Br J Cancer. 2024 Nov;131(9):1473-1479. doi: 10.1038/s41416-024-02851-z. Epub 2024 Sep 18.
8
BOADICEA model: updates to the breast cancer risks for ages 60 years and older.
BJC Rep. 2024;2(1):53. doi: 10.1038/s44276-024-00079-1. Epub 2024 Jul 24.
9
The Associations and Causal Relationships of Ovarian Cancer - Construction of a Prediction Model.
Int J Womens Health. 2024 Jun 18;16:1127-1135. doi: 10.2147/IJWH.S462883. eCollection 2024.
10
Future implications of polygenic risk scores for life insurance underwriting.
NPJ Genom Med. 2024 Mar 30;9(1):25. doi: 10.1038/s41525-024-00407-x.

本文引用的文献

2
Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants.
Genet Med. 2020 Oct;22(10):1653-1666. doi: 10.1038/s41436-020-0862-x. Epub 2020 Jul 15.
3
Systematic review of acceptability, cardiovascular, neurological, bone health and HRT outcomes following risk reducing surgery in BRCA carriers.
Best Pract Res Clin Obstet Gynaecol. 2020 May;65:46-65. doi: 10.1016/j.bpobgyn.2020.01.006. Epub 2020 Feb 4.
4
Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.
J Natl Cancer Inst. 2020 Dec 14;112(12):1242-1250. doi: 10.1093/jnci/djaa030.
5
iCARE: An R package to build, validate and apply absolute risk models.
PLoS One. 2020 Feb 5;15(2):e0228198. doi: 10.1371/journal.pone.0228198. eCollection 2020.
6
Cancer Risks Associated With Germline Pathogenic Variants: An International Study of 524 Families.
J Clin Oncol. 2020 Mar 1;38(7):674-685. doi: 10.1200/JCO.19.01907. Epub 2019 Dec 16.
8
10-year performance of four models of breast cancer risk: a validation study.
Lancet Oncol. 2019 Apr;20(4):504-517. doi: 10.1016/S1470-2045(18)30902-1. Epub 2019 Feb 21.
9
BOADICEA: a comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors.
Genet Med. 2019 Aug;21(8):1708-1718. doi: 10.1038/s41436-018-0406-9. Epub 2019 Jan 15.
10
Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study.
J Med Genet. 2018 Aug;55(8):546-554. doi: 10.1136/jmedgenet-2018-105313. Epub 2018 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验