Suppr超能文献

结构-功能分析表明 nsp14 的 N7-鸟嘌呤甲基转移酶在复制中起关键作用。

Structure-function analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in replication.

机构信息

Department of Medical Microbiology, Leiden University Medical Center 2333 ZA Leiden, The Netherlands.

Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Aix-Marseille Université 13288 Marseille, France.

出版信息

Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2108709118.

Abstract

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5' exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3'-to-5' ExoN domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14's enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.

摘要

由于冠状病毒(CoV)在宿主细胞质中复制,它们依赖自身的加帽机制来确保信使 RNA(mRNA)的有效翻译,防止它们被细胞 5'外切核酸酶(ExoN)降解,并逃避先天免疫感应。CoV 的非结构蛋白 14(nsp14)是一种具有双功能的复制酶亚基,包含一个 N 端 3'至 5'外切核酸酶结构域和一个 C 端(N7-鸟嘌呤)-甲基转移酶(N7-MTase)结构域,该结构域可能参与病毒 mRNA 的加帽。在这里,我们旨在整合结构、生化和病毒学数据,以评估保守的 N7-MTase 残基对 nsp14 酶活性和病毒活力的重要性。我们重新审视了严重急性呼吸综合征(SARS)-CoV nsp14 的晶体结构,以对贝塔冠状病毒进行计算机比较分析。我们鉴定了几个可能参与 N7-MTase 催化口袋形成的残基,该口袋的折叠与大多数已知的 MTase 中观察到的罗斯曼折叠不同。接下来,对于 SARS-CoV 和中东呼吸综合征 CoV,我们使用定点突变选择的残基来评估它们对体外酶活性的重要性。大多数工程突变消除了 N7-MTase 活性,而不影响 nsp14-ExoN 活性。在将这些突变反向工程到不同的贝塔冠状病毒基因组中后,我们鉴定了两个取代(SARS-CoV nsp14 中的 R310A 和 F426A)使病毒活力丧失,以及一个取代(H424A)使所有测试的病毒产生严重缺陷表型。我们的结果确定了 N7-MTase 是贝塔冠状病毒复制的关键酶,并定义了其催化口袋的关键残基,这些残基可以作为设计具有潜在泛冠状病毒活性谱的抑制剂的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd3c/8670481/51974a7e3d24/pnas.202108709fig04.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验