College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA.
J Virol. 2020 Jul 30;94(16). doi: 10.1128/JVI.00447-20.
The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an , as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the -adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses. Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.
病毒 RNA 的 5' 帽甲基化在 RNA 稳定性、高效翻译和免疫逃逸中发挥着重要作用。因此,RNA 帽甲基化是抗病毒发现和新型减毒活疫苗开发的有吸引力的目标。对于冠状病毒来说,RNA 帽结构首先由非结构蛋白 14(nsp14)在鸟嘌呤-N-7(G-N-7)位置甲基化,这促进并先于 nsp16-nsp10 复合物随后对核糖 2'-O 进行甲基化。我们使用猪流行性腹泻病毒(PEDV)作为模型,表明 PEDV nsp14 的 G-N-7 甲基转移酶(G-N-7 MTase)以序列非特异性方式甲基化 RNA 底物。PEDV nsp14 可以在中性和碱性 pH 环境中有效地甲基化各种长度的 RNA 底物,并且可以甲基化帽类似物(GpppA 和 GpppG)和单核苷酸 GTP,但不能甲基化 ATP、CTP 或 UTP。nsp14 中 - 腺苷基 -l-甲硫氨酸(SAM)结合基序的突变使 G-N-7 MTase 活性丧失,并使 PEDV 致死。然而,重组 rPEDV-D350A 中的单个突变(D350A)保留了 29.0%的 G-N-7 MTase 活性,仍然具有活力。重组 rPEDV-D350A 在 Vero CCL-81 细胞和猪肠上皮细胞(IPEC-DQ)中形成的斑块明显较小,病毒蛋白合成和病毒复制存在明显缺陷。值得注意的是,rPEDV-D350A 在 IPEC-DQ 细胞中诱导的 I 型和 III 型干扰素的表达均显著高于亲本 rPEDV。总的来说,我们的结果表明 PEDV 的 G-N-7 MTase 活性调节病毒复制、基因表达和先天免疫反应。冠状病毒(CoVs)包括广泛的重要人类和动物病原体。人类 CoVs 的例子包括严重急性呼吸综合征冠状病毒(SARS-CoV-1)、中东呼吸综合征冠状病毒(MERS-CoV)和最近出现的 SARS-CoV-2。猪 CoVs 的例子包括猪流行性腹泻病毒(PEDV)、猪德尔塔冠状病毒(PDCoV)和猪肠道甲型冠状病毒(SeACoV)。这些病毒中大多数都没有疫苗或抗病毒药物。所有已知的 CoVs 都编码一种具有双功能的 nsp14 蛋白,它具有外切核酸酶和鸟嘌呤-N-7 甲基转移酶(G-N-7 MTase)活性,分别负责复制保真度和 RNA 帽 G-N-7 甲基化。在这里,我们对 PEDV nsp14 的 G-N-7 MTase 进行了生化表征,发现 G-N-7 MTase 缺陷型 PEDV在复制过程中存在缺陷,并诱导了 I 型和 III 型干扰素更大的反应。这些发现强调了 CoV G-N-7 MTase 可能是合理设计减毒活疫苗和抗病毒药物的新型靶标。