Zech Alexander, Head-Gordon Martin
Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Chem Chem Phys. 2021 Dec 8;23(47):26737-26749. doi: 10.1039/d1cp04587c.
As known, small HCl-water nanoclusters display a particular dissociation behaviour, whereby at least four water molecules are required for the ionic dissociation of HCl. In this work, we examine how intermolecular interactions promote the ionic dissociation of such nanoclusters. To this end, a set of 45 HCl-water nanoclusters with up to four water molecules is introduced. Energy decomposition analysis based on absolutely localized molecular orbitals (ALMO-EDA) is employed in order to study the importance of frozen interaction, dispersion, polarization, and charge-transfer for the dissociation. The vertical ALMO-EDA scheme is applied to HCl-water clusters along a proton-transfer coordinate varying the amount of spectator water molecules. The corresponding ALMO-EDA results show a clear preference for the dissociated cluster only in the presence of four water molecules. Our analysis of adiabatic ALMO-EDA results reveals a push-pull mechanism for the destabilization of the HCl bond based on the synergy between forward and backward charge-transfer.
众所周知,小的HCl-水纳米团簇表现出一种特殊的离解行为,即HCl的离子离解至少需要四个水分子。在这项工作中,我们研究了分子间相互作用如何促进此类纳米团簇的离子离解。为此,引入了一组含有多达四个水分子的45个HCl-水纳米团簇。采用基于绝对定域分子轨道(ALMO-EDA)的能量分解分析,以研究冻结相互作用、色散、极化和电荷转移对离解的重要性。垂直ALMO-EDA方案应用于沿质子转移坐标变化旁观水分子数量的HCl-水团簇。相应的ALMO-EDA结果表明,只有在存在四个水分子的情况下,才明显倾向于离解的团簇。我们对绝热ALMO-EDA结果的分析揭示了一种基于向前和向后电荷转移协同作用的HCl键去稳定化的推拉机制。