Atwa Marwa, Li Xiaoan, Wang Zhaoxuan, Dull Samuel, Xu Shicheng, Tong Xia, Tang Rui, Nishihara Hirotomo, Prinz Fritz, Birss Viola
Department of Chemistry, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
Department of Chemistry, Suez Canal University, El Salam District, Ismailia, 41522, Egypt.
Mater Horiz. 2021 Aug 31;8(9):2451-2462. doi: 10.1039/d1mh00268f.
Although nanoporous carbons are ubiquitous materials that are used in many clean energy and environmental applications, most are in powder form, thus requiring binders to hold particles together. This results in uncontrolled and complex pathways between particles, potentially exacerbating mass transport issues. To overcome these problems, we have developed an unprecedented binderless, self-supported, nanoporous carbon scaffold (NCS) with tunable and monodisperse pores (5-100+ nm), high surface area ( 200-575 m g), and 3-dimensional scalability (1-150+ cm, 1-1000 μm thickness). Here, it is shown that NCS85 membranes (85 nm pores) are particularly promising as a host for the homogeneous and efficient 3-D atomic layer deposition (ALD) of Pt nanoparticles, due to the facile penetration of gas phase Pt precursor throughout the homogeneous, low tortuosity internal structure. Furthermore, the high density of surface defects of the as-synthesized NCS promotes uniform Pt nucleation with minimal agglomeration. These advantageous features are key to the rapid oxygen reduction kinetics observed under polymer electrolyte membrane (PEM) fuel cell MEA testing conditions. Cells constructed with an optimal ALD Pt loading of 30 cycles are shown to exhibit a specific activity of ≥0.4 mA cm which is exemplary when compared to two commercial catalyst layers with comparable Pt mass loadings and tested under the same conditions. Furthermore, a maximum power density of 1230 mW cm (IR-corrected) is obtained, with the limiting current densities approaching a very respectable 3 A cm.
尽管纳米多孔碳是广泛应用于许多清洁能源和环境领域的材料,但大多数是粉末形式,因此需要粘合剂将颗粒聚集在一起。这导致颗粒之间的路径不受控制且复杂,可能会加剧传质问题。为了克服这些问题,我们开发了一种前所未有的无粘合剂、自支撑的纳米多孔碳支架(NCS),其具有可调谐的单分散孔(5-100+纳米)、高表面积(200-575平方米/克)和三维可扩展性(1-150+厘米,1-1000微米厚)。在此,研究表明,由于气相铂前驱体能够轻松穿透均匀、低曲折度的内部结构,NCS85膜(85纳米孔径)作为铂纳米颗粒均匀高效三维原子层沉积(ALD)的基质特别有前景。此外,合成后的NCS表面缺陷密度高,促进了均匀的铂成核,团聚最小。这些有利特性是在聚合物电解质膜(PEM)燃料电池MEA测试条件下观察到快速氧还原动力学的关键。用30个循环的最佳ALD铂负载构建的电池显示出≥0.4毫安/平方厘米的比活性,与在相同条件下测试的具有可比铂质量负载的两种商业催化剂层相比,这是典范性的。此外,获得了1230毫瓦/平方厘米(经IR校正)的最大功率密度,极限电流密度接近非常可观的3安/平方厘米。