Pescher Fiona, Stiegeler Julian, Heizmann Philipp A, Klose Carolin, Vierrath Severin, Breitwieser Matthias
Electrochemical Energy Systems, Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany.
Hahn-Schickard Georges-Koehler-Allee 103 79110 Freiburg Germany.
RSC Adv. 2024 Oct 14;14(44):32358-32369. doi: 10.1039/d4ra04708g. eCollection 2024 Oct 9.
Particle atomic layer deposition (ALD) is an emerging method for engineering 3D materials, such as powders, for energy applications. In our study, we employ a commercially available and scalable particle ALD system to synthesize Pt/C electrocatalysts for fuel cells. Our method yields Pt/C catalysts characterized by highly dispersed platinum nanoparticles with a narrow particle size distribution of 2.2 ± 0.5 nm for 30 wt% Pt and 2.6 ± 0.6 nm for 40 wt% Pt, as verified through transmission electron microscopy and X-ray diffraction analysis. The performance of the ALD-synthesized catalysts is benchmarked against a state-of-the-art catalyst (TEC10V50E), with both catalysts exhibiting similar beginning-of-test performance (1.6 A cm at 0.65 V) under application-relevant operation conditions (80 °C, 50% relative humidity). After 30 000 voltage cycles, conducted in accordance with the U.S. Department of Energy's accelerated catalyst degradation test, the ALD catalysts demonstrate up to 64% greater electrochemical active surface areas and superior retention of cell performance, with a 34% higher current density at 0.65 V, compared to the reference. Given the scalability of the commercial particle ALD system, these promising results encourage the use of particle ALD as a novel synthesis approach for fuel cell catalyst materials in the industry.
颗粒原子层沉积(ALD)是一种用于制造用于能源应用的三维材料(如粉末)的新兴方法。在我们的研究中,我们采用一种商用且可扩展的颗粒ALD系统来合成用于燃料电池的Pt/C电催化剂。通过透射电子显微镜和X射线衍射分析验证,我们的方法制备的Pt/C催化剂的特征是铂纳米颗粒高度分散,30 wt% Pt时粒径分布狭窄,为2.2±0.5 nm,40 wt% Pt时为2.6±0.6 nm。将ALD合成的催化剂的性能与一种先进催化剂(TEC10V50E)进行基准测试,在相关应用操作条件(80°C,50%相对湿度)下,两种催化剂在测试开始时表现出相似的性能(0.65 V时为1.6 A cm)。根据美国能源部的加速催化剂降解测试进行30000次电压循环后,与参比催化剂相比,ALD催化剂的电化学活性表面积增大了64%,电池性能保持优异,在0.65 V时电流密度高34%。鉴于商用颗粒ALD系统的可扩展性,这些有前景的结果促使在工业中将颗粒ALD用作燃料电池催化剂材料的一种新型合成方法。