Veterinary Medicine Department, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil.
Swedish Biodiversity Centre, Department of Urban and Rural Development, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
PLoS One. 2021 Nov 30;16(11):e0260441. doi: 10.1371/journal.pone.0260441. eCollection 2021.
Capybara (Hydrochoerus hydrochaeris) is the main host of tick-borne pathogens causing Brazilian spotted fever; therefore, controlling its population is essential, and this may require chemical restraint. We assessed the impact of chemical restraint protocols on the partial pressure of arterial oxygen (PaO2) and other blood variables in 36 capybaras and the effect of different flows of nasal oxygen (O2) supplementation. The capybaras were hand-injected with dexmedetomidine (5 μg/kg) and midazolam (0.1 mg/kg) and butorphanol (0.2 mg/kg) (DMB, n = 18) or methadone (0.1 mg/kg) (DMM, n = 18). One-third of the animals were maintained in ambient air throughout the procedure, and one-third were administered intranasal 2 L/min O2 after 30 min whereas the other third were administered 5 L/min O2. Arterial blood gases, acid-base status, and electrolytes were assessed 30 and 60 min after drug injection. The DMB and DMM groups did not vary based on any of the evaluated variables. All animals developed hypoxaemia (PaO2 44 [30; 73] mmHg, SaO2 81 [62; 93] %) 30 min before O2 supplementation. Intranasal O2 at 2 L/min improved PaO2 (63 [49; 97] mmHg and SaO2 [92 [85; 98] %), but 9 of 12 capybaras remained hypoxaemic. A higher O2 flow of 5 L/min was efficient in treating hypoxaemia (PaO2 188 [146; 414] mmHg, SaO2 100 [99; 100] %) in all the 12 animals that received it. Both drug protocols induced hypoxaemia, which could be treated with intranasal oxygen supplementation.
水豚(Hydrochoerus hydrochaeris)是引起巴西斑疹热的蜱传病原体的主要宿主;因此,控制其种群数量至关重要,这可能需要进行化学约束。我们评估了化学约束方案对 36 只水豚的动脉血氧分压(PaO2)和其他血液变量的影响,以及不同流量的鼻腔氧(O2)补充的影响。水豚被手注给予右美托咪定(5μg/kg)和咪达唑仑(0.1mg/kg)和丁丙诺啡(0.2mg/kg)(DMB,n=18)或美沙酮(0.1mg/kg)(DMM,n=18)。三分之一的动物在整个过程中都在环境空气中,三分之一在 30 分钟后给予鼻腔 2L/min 的 O2,而另外三分之一给予 5L/min 的 O2。在药物注射后 30 和 60 分钟评估动脉血气、酸碱状态和电解质。DMB 和 DMM 组在任何评估变量上均无差异。所有动物在接受 O2 补充前 30 分钟都出现低氧血症(PaO2 44[30;73]mmHg,SaO2 81[62;93]%)。鼻腔 2L/min 的 O2 可改善 PaO2(63[49;97]mmHg 和 SaO2[92[85;98]%),但 12 只水豚中有 9 只仍存在低氧血症。较高的 5L/min 的 O2 流量可有效治疗所有接受该流量的 12 只动物的低氧血症(PaO2 188[146;414]mmHg,SaO2 100[99;100]%)。两种药物方案都引起低氧血症,可以通过鼻腔氧补充来治疗。