Suppr超能文献

基于挥发性代谢组学分析的呼吸检测在肝疾病无创生物标志物识别中的应用:一项初步研究。

Machine learning analysis of volatolomic profiles in breath can identify non-invasive biomarkers of liver disease: A pilot study.

机构信息

Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States of America.

出版信息

PLoS One. 2021 Nov 30;16(11):e0260098. doi: 10.1371/journal.pone.0260098. eCollection 2021.

Abstract

Disease-related effects on hepatic metabolism can alter the composition of chemicals in the circulation and subsequently in breath. The presence of disease related alterations in exhaled volatile organic compounds could therefore provide a basis for non-invasive biomarkers of hepatic disease. This study examined the feasibility of using global volatolomic profiles from breath analysis in combination with supervised machine learning to develop signature pattern-based biomarkers for cirrhosis. Breath samples were analyzed using thermal desorption-gas chromatography-field asymmetric ion mobility spectroscopy to generate breathomic profiles. A standardized collection protocol and analysis pipeline was used to collect samples from 35 persons with cirrhosis, 4 with non-cirrhotic portal hypertension, and 11 healthy participants. Molecular features of interest were identified to determine their ability to classify cirrhosis or portal hypertension. A molecular feature score was derived that increased with the stage of cirrhosis and had an AUC of 0.78 for detection. Chromatographic breath profiles were utilized to generate machine learning-based classifiers. Algorithmic models could discriminate presence or stage of cirrhosis with a sensitivity of 88-92% and specificity of 75%. These results demonstrate the feasibility of volatolomic profiling to classify clinical phenotypes using global breath output. These studies will pave the way for the development of non-invasive biomarkers of liver disease based on volatolomic signatures found in breath.

摘要

疾病相关的代谢变化会改变循环和随后呼吸中化学物质的组成。因此,呼气挥发性有机化合物中存在疾病相关改变可以为肝疾病的非侵入性生物标志物提供基础。本研究探讨了使用呼吸分析中的全局挥发组谱结合有监督机器学习来开发肝硬化特征模式生物标志物的可行性。使用热解吸-气相色谱-场不对称离子迁移谱对呼吸样本进行分析,以生成呼吸组谱。使用标准化的采集方案和分析流程从 35 名肝硬化患者、4 名非肝硬化门脉高压患者和 11 名健康参与者中采集样本。确定感兴趣的分子特征,以确定其分类肝硬化或门脉高压的能力。得出了一个分子特征评分,该评分随肝硬化分期增加而增加,其检测 AUC 为 0.78。利用色谱呼吸谱生成基于机器学习的分类器。算法模型可以以 88-92%的灵敏度和 75%的特异性区分肝硬化的存在或分期。这些结果表明,使用全局呼吸输出对临床表型进行分类的挥发组谱分析具有可行性。这些研究将为基于呼吸中发现的挥发组特征开发肝疾病的非侵入性生物标志物铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验