Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei City, 100225, Taiwan.
Sci Rep. 2022 Feb 7;12(1):2032. doi: 10.1038/s41598-022-05808-5.
Volatile organic compounds (VOCs) present in exhaled breath can help in analysing biochemical processes in the human body. Liver diseases can be traced using VOCs as biomarkers for physiological and pathophysiological conditions. In this work, we propose non-invasive and quick breath monitoring approach for early detection and progress monitoring of liver diseases using Isoprene, Limonene, and Dimethyl sulphide (DMS) as potential biomarkers. A pilot study is performed to design a dataset that includes the biomarkers concentration analysed from the breath sample before and after study subjects performed an exercise. A machine learning approach is applied for the prediction of scores for liver function diagnosis. Four regression methods are performed to predict the clinical scores using breath biomarkers data as features set by the machine learning techniques. A significant difference was observed for isoprene concentration (p < 0.01) and for DMS concentration (p < 0.0001) between liver patients and healthy subject's breath sample. The R-square value between actual clinical score and predicted clinical score is found to be 0.78, 0.82, and 0.85 for CTP score, APRI score, and MELD score, respectively. Our results have shown a promising result with significant different breath profiles between liver patients and healthy volunteers. The use of machine learning for the prediction of scores is found very promising for use of breath biomarkers for liver function diagnosis.
挥发性有机化合物(VOCs)存在于呼出的气体中,可以帮助分析人体中的生化过程。可以将 VOCs 用作生理和病理生理状况的生物标志物来追踪肝脏疾病。在这项工作中,我们提出了一种非侵入性和快速的呼吸监测方法,用于使用异戊二烯、柠檬烯和二甲基硫(DMS)作为潜在的生物标志物来早期检测和监测肝脏疾病的进展。进行了一项初步研究,以设计一个数据集,该数据集包括在研究对象进行运动前后从呼吸样本中分析出的生物标志物浓度。应用机器学习方法对肝功能诊断的分数进行预测。使用机器学习技术,通过将呼吸生物标志物数据作为特征集,对四种回归方法进行了预测。观察到异戊二烯浓度(p<0.01)和 DMS 浓度(p<0.0001)在肝病患者和健康受试者的呼吸样本之间存在显著差异。实际临床评分与预测临床评分之间的 R 平方值分别为 CTP 评分、APRI 评分和 MELD 评分的 0.78、0.82 和 0.85。我们的结果表明,在肝病患者和健康志愿者之间存在显著不同的呼吸特征,这是一个很有前途的结果。使用机器学习对分数进行预测对于使用呼吸生物标志物进行肝功能诊断非常有前途。