Suppr超能文献

无机-有机互穿网络水凝胶作为组织整合型发光植入物:物理化学特性表征和临床前评估。

Inorganic-Organic Interpenetrating Network Hydrogels as Tissue-Integrating Luminescent Implants: Physicochemical Characterization and Preclinical Evaluation.

机构信息

5045 Emerging Technologies Building, 3120 TAMU, College Station, TX, 77843, USA.

Profusa, Inc., 5959 Horton St #450, Emeryville, CA, 94608, USA.

出版信息

Macromol Biosci. 2022 Mar;22(3):e2100380. doi: 10.1002/mabi.202100380. Epub 2021 Dec 10.

Abstract

Sensors capable of accurate, continuous monitoring of biochemistry are crucial to the realization of personalized medicine on a large scale. Great strides have been made to enhance tissue compatibility of long-term in vivo biosensors using biomaterials strategies such as tissue-integrating hydrogels. However, the low level of oxygen in tissue presents a challenge for implanted devices, especially when the biosensing function relies on oxygen as a measure-either as a primary analyte or as an indirect marker to transduce levels of other biomolecules. This work presents a method of fabricating inorganic-organic interpenetrating network (IPN) hydrogels to optimize the oxygen transport through injectable biosensors. Capitalizing on the synergy between the two networks, various physicochemical properties (e.g., swelling, glass transition temperature, and mechanical properties) are shown to be independently adjustable while maintaining a 250% increase in oxygen permeability relative to poly(2-hydroxyethyl methacrylate) controls. Finally, these gels, when functionalized with a Pd(II) benzoporphyrin phosphor, track tissue oxygen in real time for 76 days as subcutaneous implants in a porcine model while promoting tissue ingrowth and minimizing fibrosis around the implant. These findings support IPN networks for fine-tuned design of implantable biomaterials in personalized medicine and other biomedical applications.

摘要

能够准确、连续监测生物化学的传感器对于大规模实现个性化医疗至关重要。已经取得了很大的进展,通过生物材料策略(如组织整合水凝胶)来提高长期体内生物传感器的组织相容性。然而,组织中低氧水平给植入设备带来了挑战,特别是当生物传感功能依赖于氧作为测量指标时,无论是作为主要分析物还是作为间接标记物来转导其他生物分子的水平。本工作提出了一种制造无机-有机互穿网络(IPN)水凝胶的方法,以优化可注射生物传感器中的氧传输。利用两个网络之间的协同作用,各种物理化学性质(例如,溶胀、玻璃化转变温度和机械性能)被证明可以独立调节,同时相对于聚(2-羟乙基甲基丙烯酸酯)对照物,氧透过率提高了 250%。最后,这些凝胶在功能化钯(II)苯并卟啉荧光团后,在猪模型中作为皮下植入物实时跟踪组织氧 76 天,同时促进组织向内生长并最大限度减少植入物周围的纤维化。这些发现支持 IPN 网络在个性化医疗和其他生物医学应用中对可植入生物材料进行精细设计。

相似文献

7
3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.具有增强物理化学性质的3D打印硅水凝胶支架
Biomacromolecules. 2016 Apr 11;17(4):1321-9. doi: 10.1021/acs.biomac.5b01722. Epub 2016 Mar 4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验