Suppr超能文献

嵌套随机块模型在单细胞数据分析中的应用。

Nested Stochastic Block Models applied to the analysis of single cell data.

机构信息

Center for Omics Sciences, IRCCS San Raffaele Institute, Milan, Italy.

Università Vita-Salute San Raffaele, Milan, Italy.

出版信息

BMC Bioinformatics. 2021 Nov 30;22(1):576. doi: 10.1186/s12859-021-04489-7.

Abstract

Single cell profiling has been proven to be a powerful tool in molecular biology to understand the complex behaviours of heterogeneous system. The definition of the properties of single cells is the primary endpoint of such analysis, cells are typically clustered to underpin the common determinants that can be used to describe functional properties of the cell mixture under investigation. Several approaches have been proposed to identify cell clusters; while this is matter of active research, one popular approach is based on community detection in neighbourhood graphs by optimisation of modularity. In this paper we propose an alternative and principled solution to this problem, based on Stochastic Block Models. We show that such approach not only is suitable for identification of cell groups, it also provides a solid framework to perform other relevant tasks in single cell analysis, such as label transfer. To encourage the use of Stochastic Block Models, we developed a python library, schist, that is compatible with the popular scanpy framework.

摘要

单细胞分析已被证明是分子生物学中一种强大的工具,可用于理解异质系统的复杂行为。此类分析的主要终点是定义单细胞的特性,通常通过对细胞进行聚类来确定共同决定因素,从而可以用来描述所研究的细胞混合物的功能特性。已经提出了几种方法来识别细胞簇;虽然这是一个活跃的研究课题,但一种流行的方法是基于通过优化模块性来在邻域图中进行社区检测。在本文中,我们提出了一种基于随机块模型的替代和有原则的解决方案。我们表明,这种方法不仅适合于识别细胞群,还为单细胞分析中的其他相关任务(例如标签转移)提供了一个坚实的框架。为了鼓励使用随机块模型,我们开发了一个名为 schist 的 Python 库,它与流行的 scanpy 框架兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c48/8630903/1ace8acbdc29/12859_2021_4489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验