Department of Mechanical Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA.
Department of Electrical and Computer Engineering, University of Houston, 4726 Calhoun Rd, Houston, TX, 77204, USA.
Nat Commun. 2021 Nov 30;12(1):6973. doi: 10.1038/s41467-021-27346-w.
Water-ice transformation of few nm nanodroplets plays a critical role in nature including climate change, microphysics of clouds, survival mechanism of animals in cold environments, and a broad spectrum of technologies. In most of these scenarios, water-ice transformation occurs in a heterogenous mode where nanodroplets are in contact with another medium. Despite computational efforts, experimental probing of this transformation at few nm scales remains unresolved. Here, we report direct probing of water-ice transformation down to 2 nm scale and the length-scale dependence of transformation temperature through two independent metrologies. The transformation temperature shows a sharp length dependence in nanodroplets smaller than 10 nm and for 2 nm droplet, this temperature falls below the homogenous bulk nucleation limit. Contrary to nucleation on curved rigid solid surfaces, ice formation on soft interfaces (omnipresent in nature) can deform the interface leading to suppression of ice nucleation. For soft interfaces, ice nucleation temperature depends on surface modulus. Considering the interfacial deformation, the findings are in good agreement with predictions of classical nucleation theory. This understanding contributes to a greater knowledge of natural phenomena and rational design of anti-icing systems for aviation, wind energy and infrastructures and even cryopreservation systems.
几纳米纳米液滴的水冰转变在包括气候变化、云微物理学、寒冷环境中动物的生存机制以及广泛的技术在内的自然界中起着关键作用。在这些情况下,水冰转变大多以异质模式发生,即在纳米液滴与另一种介质接触的情况下发生。尽管进行了计算工作,但在几纳米尺度上对这种转变的实验探测仍然没有得到解决。在这里,我们通过两种独立的计量学方法报告了直接探测到的水冰转变到 2nm 尺度以下以及转变温度的长度依赖性。在小于 10nm 的纳米液滴中,转变温度表现出明显的长度依赖性,对于 2nm 的液滴,该温度低于同质体核的极限。与在弯曲的刚性固体表面上的成核相反,在软界面(自然界中普遍存在)上形成冰可以使界面变形,从而抑制冰核的形成。对于软界面,冰核形成温度取决于表面模量。考虑到界面变形,这些发现与经典成核理论的预测非常吻合。这一理解有助于更深入地了解自然现象,并合理设计航空、风能和基础设施甚至冷冻保存系统的防冰系统。