Wong William S Y, Hegner Katharina I, Donadei Valentina, Hauer Lukas, Naga Abhinav, Vollmer Doris
Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany.
Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 589, FI-33014 Tampere, Finland.
Nano Lett. 2020 Dec 9;20(12):8508-8515. doi: 10.1021/acs.nanolett.0c02956. Epub 2020 Nov 18.
Slippery lubricant-infused surfaces (SLIPS) have shown great promise for anti-frosting and anti-icing. However, small length scales associated with frost dendrites exert immense capillary suction pressure on the lubricant. This pressure depletes the lubricant film and is detrimental to the functionality of SLIPS. To prevent lubricant depletion, we demonstrate that interstitial spacing in SLIPS needs to be kept below those found in frost dendrites. Densely packed nanoparticles create the optimally sized nanointerstitial features in SLIPS (Nano-SLIPS). The capillary pressure stabilizing the lubricant in Nano-SLIPS balances or exceeds the capillary suction pressure by frost dendrites. We term this concept capillary balancing. Three-dimensional spatial analysis via confocal microscopy reveals that lubricants in optimally structured Nano-SLIPS are not affected throughout condensation (0 °C), extreme frosting (-20 °C to -100 °C), and traverse ice-shearing (-10 °C) tests. These surfaces preserve low ice adhesion (10-30 kPa) over 50 icing cycles, demonstrating a design principle for next-generation anti-icing surfaces.
注入润滑液的超滑表面(SLIPS)在防结霜和防结冰方面展现出了巨大潜力。然而,与霜晶枝相关的小尺度会对润滑液施加巨大的毛细抽吸压力。这种压力会耗尽润滑液膜,对SLIPS的功能产生不利影响。为防止润滑液耗尽,我们证明SLIPS中的间隙间距需要保持在低于霜晶枝中的间隙间距。紧密堆积的纳米颗粒在SLIPS中创造出尺寸最优的纳米间隙特征(纳米SLIPS)。在纳米SLIPS中稳定润滑液的毛细压力平衡或超过了霜晶枝的毛细抽吸压力。我们将这一概念称为毛细平衡。通过共聚焦显微镜进行的三维空间分析表明,在结构优化的纳米SLIPS中,润滑液在整个冷凝(0°C)、极端结霜(-20°C至-100°C)和横向冰剪切(-10°C)测试过程中均不受影响。这些表面在50次结冰循环中保持低冰附着力(10 - 30 kPa),展示了下一代防冰表面的设计原理。